Study on alkali and alkaline earths poisoning characteristics for a commercial SCR catalyst
- Corresponding author: SHEN Bo-xiong, shenboxiong0722@sina.com
Citation:
SHEN Bo-xiong, LU feng-ju, GAO Lan-jun, YUE Shi-ji. Study on alkali and alkaline earths poisoning characteristics for a commercial SCR catalyst[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(4): 500-506.
GUO R T, WANG Q S, PAN W G, ZHEN W L. The poisoning effect of Na and K on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3: A comparative study[J]. Appl Surf Scl, 2014,317:111-116. doi: 10.1016/j.apsusc.2014.08.082
VASSILEV S V, VASSILEVA C G, VASSILEV V S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview[J]. Fuel, 2015,158(15):330-350.
PENG Y, LI J H, SI W Z, LUO J M. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic[J]. Appl Catal B: Environ, 2015,168.
YU Y K, HE C, CHEN J S, YIN L Q, QIU T X, MENG X R. Regeneration of deactivated commercial SCR catalyst by alkali washing[J]. Catal Commun, 2013,39:78-81. doi: 10.1016/j.catcom.2013.05.010
CHOO S T, SUNG D Y, NAM I S, HAM S W, LEE J B. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Appl Catal B: Environ, 2003,44(3):237-252. doi: 10.1016/S0926-3373(03)00073-0
SHEN B X, YAO Y, CHEN J H, ZHANG X P. Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3[J]. Microporous Mesoporous Mater, 2013,180:262-269. doi: 10.1016/j.micromeso.2013.07.004
ZHANG X, HUANG Z, LIU Z. Effect of KCl on selective catalytic reduction of NO with NH3 over a V2O5/AC catalyst[J]. Catal Commun, 2008,9(5):842-846. doi: 10.1016/j.catcom.2007.09.008
CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011,170(2/3):531-537.
WANG L, ZHAO J, BAI S. Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chem Eng J, 2014,254:399-409. doi: 10.1016/j.cej.2014.05.096
WU Z, JIN R, LIU Y. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001
WU Z, JIANG B, LIU Y. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. J Hazard Mater, 2007,145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045
MA R C, MACIEJEWSKI B A. Characterization by temperature programmed reduction[J]. Catal Today, 2000,56:347-355. doi: 10.1016/S0920-5861(99)00294-1
LISI L, LASORELLA G, MALLOGGI S. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Appl Catal B: Environ, 2004,50(4):251-258. doi: 10.1016/j.apcatb.2004.01.007
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Ying Wang , Quanguo Zhai , Zhiqiang Wang , Qingjuan Lei , Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
1: reaction gases; 2: mass flow rate controller; 3: mixer; 4: preheater; 5: temperature controller; 6: heater; 7: catalytic reactor; 8: flue gas analyzer; 9: gas valve; 10: gas sampling point
(a): F-SCR; (b): K-SCR; (c): Ca-SCR
a: F-SCR; b: K-SCR; c: Ca-SCR
a: K-SCR; b: Ca-SCR; c: F-SCR
(reaction conditions: NO 0.06%,NH3 0.066%,O2 6%,GHSV: 30000h-1)□: K/V(mol ratio)=0; ○: K/V(mol ratio)=1; △: K/V(mol ratio)=2; ▽: K/V(mol ratio)=3
(reaction conditions: NO 0.06%,NH3 0.066%,O2 6%,GHSV: 30000h-1)□: Ca/V(mol ratio)=0; ○: Ca/V(mol ratio)=1; △: Ca/V(mol ratio)=2; ▽: Ca/V(mol ratio)=3