Citation: TAN Liang, MIAO Lei, WU Kui, WANG Wei-yan, YANG Yun-quan. Preparation of Ru/Co-Al-O supported catalysts and its hydrodeoxygenation properties[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 219-224. shu

Preparation of Ru/Co-Al-O supported catalysts and its hydrodeoxygenation properties

  • Corresponding author: WANG Wei-yan, wangweiyan@xtu.edu.cn.
  • Received Date: 30 August 2017
    Revised Date: 4 January 2018

    Fund Project: Hunan Province Graduate Research and Innovation Funded Projects CX2017B334the National Natural Science Foundation of China 21776236The project was supported by the National Natural Science Foundation of China (21776236, 21676225) and Hunan Province Graduate Research and Innovation Funded Projects(CX2017B334)the National Natural Science Foundation of China 21676225

Figures(4)

  • Co-Al layered double hydroxides were prepared by co-precipitation method and converted into composite oxides via calcination.The composite oxide were then used to prepare a series of Ru/Co-Al-O supported catalysts.The structures and properties of the catalysts were characterized by XRD, BET and FT-IR.The hydrodeoxygenation (HDO) properties of these catalysts were tested by using 4-methylphenol as a typical oxygen-containing model compound of lignin biomass oil.This study concentrated on the effects of Co/Al molar ratio and the reduction temperature of the catalyst on the hydrodeoxygenation activity of Ru/Co-Al-O and the optimization of HDO temperature.The results showed that when the molar ratio of Co/Al was 3:1, the catalyst reduction temperature was 350℃ and the reaction temperature was 275℃, the HDO activity was the highest:both the conversion and deoxygenation degree in the HDO of p-methyl phenol reached up to 100%.
  • 加载中
    1. [1]

      LIU Z, GUAN D, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-BROWN D, LIN J, ZHAO H, HONG C, BODEN T A, FENG K, PETERS G P, XI F, LIU J, LI Y, ZHAO Y, ZENG N, HE K. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015,524(7565):335-338. doi: 10.1038/nature14677

    2. [2]

      LI C, ZHAO X, WANG A, HUBER G W, ZHANG T. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev, 2015,115(21):11559-11624. doi: 10.1021/acs.chemrev.5b00155

    3. [3]

      SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014,7(1):103-129. doi: 10.1039/C3EE43081B

    4. [4]

      ZHAO C, LERCHER J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions[J]. Angew Chem Int Ed, 2012,51(24):5935-5940. doi: 10.1002/anie.201108306

    5. [5]

      HONG Y, ZHANG H, SUN J, AYMAN K M, HENSLEY A J R, Gu M, ENGELHARD M H, MCEWEN J-S, Wang Y. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol[J]. ACS Catal, 2014,4(10):3335-3345. doi: 10.1021/cs500578g

    6. [6]

      WANG G H, CAO Z, GU D, PFÄNDER N, SWERTZ A C, SPLIETHOFF , BONGARD H J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHUTH F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angew Chem Int Ed, 2016,55(31):8850-8855. doi: 10.1002/anie.201511558

    7. [7]

      GRILC M, VERYASOV G, LIKOZAR B, JESIH A, LEVEC J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts[J]. Appl Catal B:Environ, 2015,1633(0):467-477.  

    8. [8]

      CECILIA J A, INFANTES-MOLINA A, SANMARTIN-DONOSO J, RODRIGUEZ-AGUADO E, BALLESTEROS-PLATA D, RODRIGUEZ-CASTELLON E. Enhanced HDO activity of Ni2P promoted with noble metals[J]. Catal Sci Technol, 2016,6(19):7323-7333. doi: 10.1039/C6CY00639F

    9. [9]

      DING R, WU Y, CHEN Y, CHEN H, WANG J, SHI Y, YANG M. Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO2/CNTs catalyst:an insight into the promoting effect of cobalt[J]. Catal Sci Technol, 2016,6(7):2065-2076. doi: 10.1039/C5CY01575H

    10. [10]

      PATEL M, KUMAR A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J]. Renewable Sustainable Energy Rev, 2016,58(4):1293-1307.  

    11. [11]

      WANG W, LIU P, WU K, TAN S, LI W, YANG Y. Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalyst and their high hydrodeoxygenation activities[J]. Green Chem, 2016,18(4):984-988. doi: 10.1039/C5GC02073E

    12. [12]

      KUSUMOTO S, NOZAKI K. Direct and selective hydrogenolysis of arenols and aryl methyl ethers[J]. Nature Communications, 2015,6(3)6296.  

    13. [13]

      DE SOUZA P M, RABELO-NETO R C, BORGES L E P, JACOBS G, DAVIS B H, GRAHAM U M, REASASCO D E, NORONHA F B. Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2[J]. ACS Catal, 2015,5(12):7385-7398. doi: 10.1021/acscatal.5b01501

    14. [14]

      WANG L, ZHANG J, YI X, ZHENG A, DENG F, CHEN C, JI Y, LIU F, MENG X, XIAO F S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules[J]. ACS Catal, 2015,5(5):2727-2734. doi: 10.1021/acscatal.5b00083

    15. [15]

      LUSKA K L, MIGOWSKI P, EL SAYED S, LEITNER W. Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols[J]. Angew Chem Int Ed, 2015,54(52):15750-15755. doi: 10.1002/anie.201508513

    16. [16]

      DE SOUZA P M, RABELONETO R C P, BORGES L E, JACOBS G, DAVIS B H, RESASCO D E, NORONHA F B. Hydrodeoxygenation of phenol over Pd catalysts.Effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal, 2017,4(5):986-990.  

    17. [17]

      SUN Q, CHEN G, WANG H, LIU X, HAN J, GE Q, ZHU X. Insights into the major reaction pathways of vapor-phase hydrodeoxygenation of m-cresol on a Pt/HBeta catalyst[J]. ChemCatChem, 2016,8(3):551-561. doi: 10.1002/cctc.201501232

    18. [18]

      FAN G, LI F, EVANS D G, DUAN X. Catalytic applications of layered double hydroxides:Recent advances and perspectives[J]. Chem Soc Rev, 2014,43(20):7040-7066. doi: 10.1039/C4CS00160E

    19. [19]

      TIAN Z, LI Q, HOU J, PEI L, LI Y, AI S. Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde[J]. J Catal, 2015,331(3):193-202.  

    20. [20]

      MANFRO R L, PIRES T P M D, RIBEIRO N F P, SOUZA M M V M. Aqueous-phase reforming of glycerol using Ni-Cu catalysts prepared from hydrotalcite-like precursors[J]. Catal Sci Technol, 2013,3(5):1278-1287. doi: 10.1039/c3cy20770f

    21. [21]

      WANG W, ZHANG K, YANG Y, LIU H, QIAO Z, LUO H. Synthesis of mesoporous Al2O3 with large surface area and large pore diameter by improved precipitation method[J]. Microporous Mesoporous Mater, 2014,193(0):47-53.  

    22. [22]

      WANG Z, JIANG Z, SHANGGUAN W. Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites[J]. Catal Commun, 2007,8(11):1659-1664. doi: 10.1016/j.catcom.2007.01.025

    23. [23]

      LIU X, FAN B, GAO S, LI R. Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose[J]. Fuel Process Technol, 2013,106(6):761-768.  

    24. [24]

      POPOV A, KONDRATIEVA E, MARIEY L, GOUPIL J M, EL FALLAH J, GILSON J-P, TRAVERT A, MAUGE F. Bio-oil hydrodeoxygenation:Adsorption of phenolic compounds on sulfided (Co)Mo catalysts[J]. J Catal, 2013,297(0):176-186.  

    25. [25]

      YANG Y, LUO H A, TONG G, SMITH K J, TYE C T. Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures[J]. Chin J Chem Eng, 2008,16(5):733-739. doi: 10.1016/S1004-9541(08)60148-2

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    19. [19]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    20. [20]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

Metrics
  • PDF Downloads(12)
  • Abstract views(1601)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return