Citation: Gao Bowen, Su Lei, Zhang Xueji. Fabrication of Manganese Dioxide Nanotube Array through Potassium Permanganate Reduction by Polydopamine Coatings Formed on Zinc Oxide Nanorod Array Template[J]. Chemistry, ;2017, 80(1): 53-58. shu

Fabrication of Manganese Dioxide Nanotube Array through Potassium Permanganate Reduction by Polydopamine Coatings Formed on Zinc Oxide Nanorod Array Template

Figures(7)

  • In this work, manganese dioxide (MnO2) nanotube arrays are fabricated by using polydopamine coated-zinc oxide nanorod supported on quartz plates as template, followed by potassium permanganate reduction by polydopamine and the ZnO template removal. Characterization results showed that as-fabricated MnO2 nanotubes have well-defined tube morphology and strongly adhere to the substrate. The formed MnO2 is amorphous. Polydopamine coated zinc oxide nanostructure as template exhibits several advantages, for example, it possesses diverse surface morphologies, and is easy to be synthesized and removed; the formation of polydopamine is also facile. These advantages might pave the way towards simple and facile fabrication of various MnO2 nanostructures.
  • 加载中
    1. [1]

      M Huang, F Li, F Dong et al. J. Mater. Chem. A, 2015, 3:21380-21423. 

    2. [2]

      C J Xu, F Y Kang, B H Li et al. J. Mater. Res., 2010, 25(8):1421-1432. 

    3. [3]

      J Y Cao, X H Li, Y M Wang et al. J. Power Sources, 2015, 293:657-674. 

    4. [4]

      Y M He, W J Chen, X D Li et al. ACS Nano, 2013, 7(1):174-182. 

    5. [5]

      P H Yang, X Xiao, Y Z Li et al. ACS Nano, 2013, 7(3):2617-2626. 

    6. [6]

       

    7. [7]

       

    8. [8]

       

    9. [9]

      Y C Lu, S H Yang. J. Phys. Chem. Lett., 2013, 4:93-99. 

    10. [10]

      D A Tompsett, M S Islam. Chem. Mater., 2013, 25:2515-2526. 

    11. [11]

      X H Lu, M H Yu, G M Wang et al. Adv. Mater., 2013, 25:267-272. 

    12. [12]

      C C Kuo, W J Lan, C H Chen. Nanoscale, 2014, 6:334-341. 

    13. [13]

      J Y Qu, L Shi, C X He. Carbon, 2014, 66:485-492. 

    14. [14]

      H Wang, G J Zhao, M Pumera. J. Am. Chem. Soc., 2014, 136:2719-2722. 

    15. [15]

       

    16. [16]

      B Y Bai, J H Li, J M Hao. Appl. Catal. B:Environ., 2015, 164:241-250. 

    17. [17]

      L Li, K Scott, E H Yu. J. Power Sources, 2013, 221:1-5. 

    18. [18]

      H J Huang, Q Chen, M Y He et al. J. Power Sources, 2013, 239:189-195. 

    19. [19]

      T D Dang, A N Banerjee, M A Cheney et al. Colloid Surf. B, 2013, 106:151-157. 

    20. [20]

       

    21. [21]

      J J Shan, Y Zhu, S R Zhang et al. J. Phys. Chem. C, 2013, 117:8329-8335. 

    22. [22]

       

    23. [23]

      B Y Bai, Q Qiao, J H Li et al. Chin. J. Catal., 2016, 37:27-31. 

    24. [24]

       

    25. [25]

      C C Ji, H Q Ren, S C Yang. RSC Adv., 2015, 5:21978-21987. 

    26. [26]

      M Q Xue, Z Xie, L S Zhang et al. Nanoscale, 2011, 3:2703-2708. 

    27. [27]

      Y Wang, J Zhu, J Han et al. Nanotechnology, 2008, 19:1-8.

    28. [28]

      C L Xu, S J Bao, L B Kong et al. J. Solid State Chem., 2006, 179:1351-1355. 

    29. [29]

      X Wang, Y D Li. Chem. Eur. J., 2003, 9(1):300-3006. 

    30. [30]

      T Gao, M Glerup, F Krumeich et al. J. Phys. Chem. C, 2008, 112:13134-13140. 

    31. [31]

      F Y Cheng, Y Su, J Liang et al. Chem. Mater., 2010, 22:898-905. 

    32. [32]

      J W Long, L R Qadir, R M Stroud et al. J. Phys. Chem. B, 2001, 105:8712-8717. 

    33. [33]

      C Z Wei, H Pang, B Zhang et al. Sci. Rep., 2013, 3:2193-2197.

    34. [34]

       

    35. [35]

      M Zhou, X Zhang, J M Wei et al. J. Phys. Chem. C, 2011, 115:1398-1402. 

    36. [36]

      P Umek, A Gloter, M Pregelj et al. J. Phys. Chem. C, 2009, 113:14798-14803. 

    37. [37]

      H Q Wang, J Chen, S J Hu et al. RSC Adv., 2015, 5:72495-72499. 

    38. [38]

      C Z Yuan, L R Hou, L Yang et al. J. Mater. Chem., 2011, 21:16035-16041. 

    39. [39]

      D Yan, P X Yan, G H Yue et al. Chem. Phys. Lett., 2007, 440:134-138. 

    40. [40]

      T D Dang, A N Banerjee, S W Joo et al. Ind. Eng. Chem. Res., 2014, 53:9743-9753. 

    41. [41]

      J Yue, X Gu, X L Jiang et al. Electrochim. Acta, 2015, 182:676-681. 

    42. [42]

      H Chen, B Zhang, F Li et al. Electrochim. Acta, 2016, 187:488-495. 

    43. [43]

      Q R Liu, X G Duan, H Q Sun et al. J. Phys. Chem. C, 2016, 120:16871-16878. 

    44. [44]

      H Q Wang, G F Yang, Q Y Li et al. New J. Chem., 2011, 35:469-475. 

    45. [45]

      G H An, J I Sohn, H J Ahn. J. Mater. Chem. A, 2016, 4:2049-2054. 

    46. [46]

      J J Shang, B BXie, Y Li et al. ACS Nano, 2016, 10:5916-5921. 

    47. [47]

      J Yan, L P Yang, M F Lin et al. Small, 2013, 9(4):596-603. 

    48. [48]

      Y Wang, P S Ding, C Wang. J. Alloys Compd., 2016, 654:273-279. 

    49. [49]

      Z X Yang, J Liang, F Y Cheng et al. Micropor. Mesopor. Mater., 2012, 161:40-47. 

    50. [50]

      J G Wang, Y Yang, Z H Huang et al. Mater. Chem. Phys., 2013, 140:643-650. 

    51. [51]

      G G Kumar, Z Awan, K S Nahm et al. Biosens. Bioelectron., 2014, 53:528-534. 

    52. [52]

      W H Guo, T J Liu, P Jiang et al. J. Colloid Interf. Sci., 2015, 437:304-310. 

    53. [53]

      L Y Chen, J L Kang, Y Hou et al. J. Mater. Chem. A, 2013, 1:9202-9207. 

    54. [54]

      S M Zhu, Z Y Zhou, D Zhang et al. Micropor. Mesopor. Mater., 2006, 95:257-264. 

    55. [55]

      X Yang, D G He, X X He et al. Part. Part. Syst. Charact., 2015, 32:205-212. 

    56. [56]

      Z Y Wang, F P Wang, J H Tu et al. Mater. Lett., 2016, 171:10-13. 

    57. [57]

      X Z Wang, Y H Xiao, D C Su et al. Electrochim. Acta, 2016, 194:377-384. 

    58. [58]

      J Zhi, O Reiser, Y F Wang et al. Nanoscale, 2016, 8:11976-11983. 

    59. [59]

      Y L Xi, G D Wei, X L Liu et al. Chem. Eng. J., 2016, 290:361-370. 

    60. [60]

      S H S Zein, L C Yeoh, S P Chai et al. J. Mater. Process. Technol., 2007, 190:402-405. 

    61. [61]

      Q Wang, J Yan, Y B Wang et al. Carbon, 2013, 52:209-218. 

    62. [62]

      S Hong, S Lee, U Paik. Electrochim. Acta, 2014, 141:39-44. 

    63. [63]

      H Xia, J K Feng, H L Wang et al. J. Power Sources, 2010, 195:4410-4413. 

    64. [64]

      Y G Huang, X H Zhang, X B Chen et al. Int. J. Hydrogen Energy, 2015, 40:14331-14337. 

    65. [65]

      Y Liu, J Xu, H G Li et al. J. Mater. Chem. A, 2015, 3:11543-11553. 

    66. [66]

      Q Li, Z L Wang, G R Li et al. Nano Lett., 2012, 12:3803-3807. 

    67. [67]

      J H Han, Z F Liu, K Y Guo et al. Appl. Catal. B:Environ., 2015, 163:179-188. 

    68. [68]

      W Gong, W S Chen, J P He et al. Carbon, 2015, 83:275-281. 

    69. [69]

      D Yan, P C Xu, Q Xiang et al. J. Mater. Chem. A, 2016, 4:3487-3493. 

    70. [70]

      B W Gao, L Su, X J Zhang et al. J. Phys. Chem. B, 2014, 118:12781-12787. 

    71. [71]

      Y Ma, S G Wang, M H Fan et al. J. Hazard. Mater., 2009, 168:1140-1146. 

    72. [72]

      P Mahamallik, S Saha, A Pal. Chem. Eng. J., 2015, 276:155-165. 

    73. [73]

      M Q Wu, L P Zhang, J H Gao et al. J. Electrochem. Soc., 2008, 155(5):355-360. 

    74. [74]

      S Ashoka, P Chithaiah, C N Tharamani et al. J. Exp. Nanosci., 2010, 5(4):285-293. 

    75. [75]

      W Q Ma, Q Q Shi, H H Nan et al. RSC Adv., 2015, 5:39864-39869. 

    76. [76]

      J H Yang, J H Zheng, H J Zhai et al. J. Alloys Compd., 2009, 475:741-744. 

    77. [77]

      Y Surace, M Simões, S Pokrant et al. J. Electroanal. Chem., 2016, 766:44-51. 

    78. [78]

      M Musil, B Choi, A Tsutsumi. J. Electrochem. Soc., 2015, 162(10):2058-2065. 

    79. [79]

      J B Jia, P Y Zhang, L Chen. Appl. Catal. B, 2016, 189:210-218. 

    80. [80]

       

    81. [81]

      H Lee, S M Dellatore, W M Miller et al. Science, 2007, 318:426-430. 

    82. [82]

      Y Zhao, P Jiang, S S Xie. J. Power Sources, 2013, 239:393-398. 

    83. [83]

      K Govender, D S Boyle, P B Kenway et al. J. Mater. Chem., 2004, 14:2575-2591. 

    84. [84]

      M Guo, P Diao, S Cai. J. Solid State Chem., 2005, 178:1864-1873. 

    85. [85]

      B Yin, Y Qiu, H Q Zhang. RSC Adv., 2016, 6:48319-48323. 

    86. [86]

      V Ball, D Del Frari, M Michel et al. BioNanoSci., 2012, 2:16-34. 

    87. [87]

      N F D Vecchia, R Avolio, M E Errico et al. Adv. Funct. Mater., 2013, 23:1331-1340. 

    88. [88]

      J Liebscher, H A Scheidt, C Filip et al. Langmuir, 2013, 29:10539-10548. 

    89. [89]

      Y Liu, K Ai, L Lu. Chem. Rev., 2014, 114(9):5057-5115. 

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    7. [7]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(14)
  • Abstract views(4222)
  • HTML views(674)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return