Citation: Zhang Wenlin, Lan Xiaoyan, Shi Ziwei, Li Chunli. Research Progress in New-Type High Voltage Electrolyte used for Lithium Batteries[J]. Chemistry, ;2017, 80(11): 1021-1026. shu

Research Progress in New-Type High Voltage Electrolyte used for Lithium Batteries

  • Received Date: 14 June 2017
    Accepted Date: 20 July 2017

Figures(2)

  • Traditional carbonate electrolyte can be easily oxidized and decomposed continuously under high pressure condition, which seriously restricts the development of high voltage lithium battery. Therefore, it is necessary for designers to follow the principles of sustainable development and green chemistry in designing and synthesizing new high-pressure electrolytes. The dominating reasons why carbonate-based electrolyte under high pressure condition can be oxidized and the status of the traditional electrolytes are described in this paper. In addition to that, the recent advances of new several high-pressure electrolytes such as novel carbonates, nitriles, sulfones and ionic liquids are reviewed. The effect and mechanism of the electrolyte under high pressure are discussed in detail, which provide the direction for enhancing the stability of electrolyte, reducing the viscosity, improving the conductivity as well as safety performance, and lay the foundation for the further industrialization of high-pressure electrolyte.
  • 加载中
    1. [1]

      M Armand, J M Tarason. Nature, 2008, 451(7179): 652~657.

    2. [2]

      X Zhang, P N Ross, R Kostecki et al. J. Electrochem. Soc., 2000, 148(5): A463~A470. 

    3. [3]

      B Z Li, L D Xing, M Q Xu et al. Electrochem. Commun., 2013, 34: 48~51. 

    4. [4]

      X D Xiang, X Q Li, W S Li et al. J. Power Sources, 2013, 230: 89~95. 

    5. [5]

      R Santhanam, B Rambabu. J. Power Sources, 2010, 195(17): 5442~5451. 

    6. [6]

      J Liu, A Manthiram. J. Electrochem. Soc., 2008, 156(1): A66~A72.

    7. [7]

      J Liu, A Manthiram. J. Electrochem. Soc., 2009, 156(12): A833~A838. 

    8. [8]

      S Ferrari, E Quartarone, C Tomasi et al. J. Power Sources, 2013, 235(4): 142~147. 

    9. [9]

       

    10. [10]

      M Arakawa, J I Yamaki. J. Power Sources, 1995, 54: 250~254. 

    11. [11]

      M Moshkovich, M Cojocaru, H E Gottlieb et al. Electroanal. Chem., 2001, 497: 84~96. 

    12. [12]

      S Tan, Y J Ji, Z R Zhang et al. ChemPhysChem, 2014, 15(10): 1956~1969. 

    13. [13]

      L D Xing, O Borodin. Phys. Chem. Chem. Phys., 2012, 14: 12838~12843. 

    14. [14]

      Y T Wang, L D Xing, W S Li et al. J. Phys. Chem. Lett., 2013, 4(22): 3992~3999. 

    15. [15]

      J Vatamanu, O Borodin, G D Smith. J. Phys. Chem. C, 2012, 116(1): 1114~1121. 

    16. [16]

      Y Zhu, Y Li, M D Casselman et al. J. Power Sources, 2014, 246(3): 184~191. 

    17. [17]

      J Im, J Lee, M H Ryou et al. J. Electrochem. Soc., 2017, 164(1): A6381~A6385. 

    18. [18]

      R Wagmer, S Brox, D R Gallus et al. Electrochem. Commun., 2014, 40(3): 80~83.

    19. [19]

      J J Yun, L Zhang, Q T Qu et al. Electrochimica Acta, 2015, 167: 151~159. 

    20. [20]

      C C Su, M He, C Peebles et al. J. Electrochem. Soc., 2014, 157: A1777~A1781.

    21. [21]

      K Xu, S Zhang, J LAllen et al. J. Electrochem. Soc., 2003, 150(2): A170~A175. 

    22. [22]

      S S Zhang, K Xu, T R Jow. J. Electrochem. Soc., 2002, 5(9): A206~A208. 

    23. [23]

      S S Zhang, K Xu, T R Jow. J. Power Sources, 2003, 113(1): 166~172. 

    24. [24]

      N V Aspern, S Röser, B R Rad et al. J. Fluorine Chem., 2017, 198: 24~33. 

    25. [25]

      Z D Li, Y C Zhang, H F Xiang et al. J. Power Sources, 2013, 240: 471~475. 

    26. [26]

      J Xia, L Madec, L Ma et al. J. Power Sources, 2015, 295: 203~211. 

    27. [27]

      S S Zhang. J. Power Sources, 2006, 162(2): 1379~1394. 

    28. [28]

      Y Li, T Markmaitree, B L Lucht. J. Power Sources, 2011, 196(4): 2251~2254. 

    29. [29]

      X X Zuo, C J Fan, J S Liu et al. J. Power Sources, 2013, 229: 308~312. 

    30. [30]

      M Xu, L Zhou, Y Dong et al. Energy Environ. Sci., 2016, 9(4): 1308~1319. 

    31. [31]

      H Duncan, N Salem, Y Abu-Lebdeh. J. Electrochem. Soc., 160(6): A838~A848. 

    32. [32]

      T Q Yong, J L Wang, Y J Maii et al. J. Power Sources, 2014, 254(15): 29~32.

    33. [33]

      Y Abu-Lebdeh, I Davidson. J. Electrochem. Soc., 2009, 156(1): A60~A65. 

    34. [34]

      Y Abu-Lebdeh, I Davidson. J. Power Sources, 2009, 189(1): 576~579. 

    35. [35]

      A J Gmitter, I Plitz, G G Amatucci. J. Electrochem. Soc., 2012, 159(4): A370~A379. 

    36. [36]

      N Salem, H Duncan, P Whitfield et al. ECS Meeting, 2013, 66: 323. 

    37. [37]

      B Xie, Y G Mai, J L Wang et al. Ionics, 2015, 21(4): 909~915. 

    38. [38]

      K Xu, C A Angell. J. Electrochem. Soc., 2002, 149(7): A920~A926. 

    39. [39]

       

    40. [40]

      L G Xue, S Y Lee, Z F Zhao et al. J. Power Sources, 2015, 295: 190~196. 

    41. [41]

      X G Sun, C A Angell. Electrochem. Commun., 2005, 7(3): 261~266. 

    42. [42]

      X G Sun, C A Angell. Electrochem. Commun., 2009, 11(7): 1418~1421. 

    43. [43]

      L E Ouatani, R Dedryvere, C Siret et al. J. Electrochem. Soc., 2009, 156(2): A103~A113. 

    44. [44]

      S Y Li, Y Y Zhao, X M Shi et al. Electrochim. Acta, 2012, 65: 221~227. 

    45. [45]

      Mao, B Li, X Cui et al. Electrochim. Acta, 2012, 79: 197~201. 

    46. [46]

      F Wu, Q Z Zhu, R J Chen et al. Nano Energy, 2015, 13: 546~553. 

    47. [47]

      M Hirayama, H Ido, K S Kim et al. J. Am. Chem. Soc., 2010, 132(43): 15268~15276. 

    48. [48]

       

    49. [49]

      Q Du, X K Fu, S J Liu et al. Polym. Int., 2012, 61(2): 222~227.

    50. [50]

      V Borgel, E Markevich, D Aurbach et al. J. Power Sources, 2009, 189(1): 331~336. 

    51. [51]

      E Simonetti, G Maresca, G B Appetecchi et al. J. Power Sources, 2016, 331: 426~434. 

    52. [52]

      A Tsurumaki, M A Navarra, S Panero et al. J. Power Sources, 2013, 233: 104~109. 

    53. [53]

      T Q Yong, L Z Zhang, J L Wang et al. J. Power Sources, 2016, 328: 397~404. 

    54. [54]

      S Pandian, S G Raju, K S Hariharan et al. J. Power Sources, 2015, 286: 204~209. 

    55. [55]

      D R Macfarlane, S A Forsyth, J Golding et al. Green Chem., 2002, 4(5): 444~448. 

    56. [56]

  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    3. [3]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    16. [16]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    19. [19]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(36)
  • Abstract views(3035)
  • HTML views(724)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return