Citation:
Zhang Wenlin, Lan Xiaoyan, Shi Ziwei, Li Chunli. Research Progress in New-Type High Voltage Electrolyte used for Lithium Batteries[J]. Chemistry,
;2017, 80(11): 1021-1026.
-
Traditional carbonate electrolyte can be easily oxidized and decomposed continuously under high pressure condition, which seriously restricts the development of high voltage lithium battery. Therefore, it is necessary for designers to follow the principles of sustainable development and green chemistry in designing and synthesizing new high-pressure electrolytes. The dominating reasons why carbonate-based electrolyte under high pressure condition can be oxidized and the status of the traditional electrolytes are described in this paper. In addition to that, the recent advances of new several high-pressure electrolytes such as novel carbonates, nitriles, sulfones and ionic liquids are reviewed. The effect and mechanism of the electrolyte under high pressure are discussed in detail, which provide the direction for enhancing the stability of electrolyte, reducing the viscosity, improving the conductivity as well as safety performance, and lay the foundation for the further industrialization of high-pressure electrolyte.
-
Keywords:
- Ionic liquids,
- Electrolyte,
- Viscosity,
- Conductivity
-
-
-
[1]
M Armand, J M Tarason. Nature, 2008, 451(7179): 652~657.
-
[2]
X Zhang, P N Ross, R Kostecki et al. J. Electrochem. Soc., 2000, 148(5): A463~A470.
-
[3]
B Z Li, L D Xing, M Q Xu et al. Electrochem. Commun., 2013, 34: 48~51.
-
[4]
X D Xiang, X Q Li, W S Li et al. J. Power Sources, 2013, 230: 89~95.
-
[5]
R Santhanam, B Rambabu. J. Power Sources, 2010, 195(17): 5442~5451.
-
[6]
J Liu, A Manthiram. J. Electrochem. Soc., 2008, 156(1): A66~A72.
-
[7]
J Liu, A Manthiram. J. Electrochem. Soc., 2009, 156(12): A833~A838.
-
[8]
S Ferrari, E Quartarone, C Tomasi et al. J. Power Sources, 2013, 235(4): 142~147.
- [9]
- [10]
-
[11]
M Moshkovich, M Cojocaru, H E Gottlieb et al. Electroanal. Chem., 2001, 497: 84~96.
-
[12]
S Tan, Y J Ji, Z R Zhang et al. ChemPhysChem, 2014, 15(10): 1956~1969.
-
[13]
L D Xing, O Borodin. Phys. Chem. Chem. Phys., 2012, 14: 12838~12843.
-
[14]
Y T Wang, L D Xing, W S Li et al. J. Phys. Chem. Lett., 2013, 4(22): 3992~3999.
-
[15]
J Vatamanu, O Borodin, G D Smith. J. Phys. Chem. C, 2012, 116(1): 1114~1121.
-
[16]
Y Zhu, Y Li, M D Casselman et al. J. Power Sources, 2014, 246(3): 184~191.
-
[17]
J Im, J Lee, M H Ryou et al. J. Electrochem. Soc., 2017, 164(1): A6381~A6385.
-
[18]
R Wagmer, S Brox, D R Gallus et al. Electrochem. Commun., 2014, 40(3): 80~83.
-
[19]
J J Yun, L Zhang, Q T Qu et al. Electrochimica Acta, 2015, 167: 151~159.
-
[20]
C C Su, M He, C Peebles et al. J. Electrochem. Soc., 2014, 157: A1777~A1781.
-
[21]
K Xu, S Zhang, J LAllen et al. J. Electrochem. Soc., 2003, 150(2): A170~A175.
-
[22]
S S Zhang, K Xu, T R Jow. J. Electrochem. Soc., 2002, 5(9): A206~A208.
-
[23]
S S Zhang, K Xu, T R Jow. J. Power Sources, 2003, 113(1): 166~172.
-
[24]
N V Aspern, S Röser, B R Rad et al. J. Fluorine Chem., 2017, 198: 24~33.
-
[25]
Z D Li, Y C Zhang, H F Xiang et al. J. Power Sources, 2013, 240: 471~475.
-
[26]
J Xia, L Madec, L Ma et al. J. Power Sources, 2015, 295: 203~211.
- [27]
-
[28]
Y Li, T Markmaitree, B L Lucht. J. Power Sources, 2011, 196(4): 2251~2254.
-
[29]
X X Zuo, C J Fan, J S Liu et al. J. Power Sources, 2013, 229: 308~312.
-
[30]
M Xu, L Zhou, Y Dong et al. Energy Environ. Sci., 2016, 9(4): 1308~1319.
-
[31]
H Duncan, N Salem, Y Abu-Lebdeh. J. Electrochem. Soc., 160(6): A838~A848.
-
[32]
T Q Yong, J L Wang, Y J Maii et al. J. Power Sources, 2014, 254(15): 29~32.
-
[33]
Y Abu-Lebdeh, I Davidson. J. Electrochem. Soc., 2009, 156(1): A60~A65.
-
[34]
Y Abu-Lebdeh, I Davidson. J. Power Sources, 2009, 189(1): 576~579.
-
[35]
A J Gmitter, I Plitz, G G Amatucci. J. Electrochem. Soc., 2012, 159(4): A370~A379.
-
[36]
N Salem, H Duncan, P Whitfield et al. ECS Meeting, 2013, 66: 323.
-
[37]
B Xie, Y G Mai, J L Wang et al. Ionics, 2015, 21(4): 909~915.
-
[38]
K Xu, C A Angell. J. Electrochem. Soc., 2002, 149(7): A920~A926.
- [39]
-
[40]
L G Xue, S Y Lee, Z F Zhao et al. J. Power Sources, 2015, 295: 190~196.
-
[41]
X G Sun, C A Angell. Electrochem. Commun., 2005, 7(3): 261~266.
-
[42]
X G Sun, C A Angell. Electrochem. Commun., 2009, 11(7): 1418~1421.
-
[43]
L E Ouatani, R Dedryvere, C Siret et al. J. Electrochem. Soc., 2009, 156(2): A103~A113.
-
[44]
S Y Li, Y Y Zhao, X M Shi et al. Electrochim. Acta, 2012, 65: 221~227.
-
[45]
Mao, B Li, X Cui et al. Electrochim. Acta, 2012, 79: 197~201.
-
[46]
F Wu, Q Z Zhu, R J Chen et al. Nano Energy, 2015, 13: 546~553.
-
[47]
M Hirayama, H Ido, K S Kim et al. J. Am. Chem. Soc., 2010, 132(43): 15268~15276.
- [48]
-
[49]
Q Du, X K Fu, S J Liu et al. Polym. Int., 2012, 61(2): 222~227.
-
[50]
V Borgel, E Markevich, D Aurbach et al. J. Power Sources, 2009, 189(1): 331~336.
-
[51]
E Simonetti, G Maresca, G B Appetecchi et al. J. Power Sources, 2016, 331: 426~434.
-
[52]
A Tsurumaki, M A Navarra, S Panero et al. J. Power Sources, 2013, 233: 104~109.
-
[53]
T Q Yong, L Z Zhang, J L Wang et al. J. Power Sources, 2016, 328: 397~404.
-
[54]
S Pandian, S G Raju, K S Hariharan et al. J. Power Sources, 2015, 286: 204~209.
-
[55]
D R Macfarlane, S A Forsyth, J Golding et al. Green Chem., 2002, 4(5): 444~448.
-
[56]
-
[1]
-
-
-
[1]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[2]
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
-
[3]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[4]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[5]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[8]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[9]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[10]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[11]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[12]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[13]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[14]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[15]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
-
[16]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[17]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[18]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[19]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[20]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[1]
Metrics
- PDF Downloads(36)
- Abstract views(3035)
- HTML views(724)