Citation: WANG Lei, ZHAO Xin-hua, XIONG Zhen-hu, ZHANG Jin-miao, LI Chen, WU Chun-sheng. Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1089-1098. shu

Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel

Figures(7)

  • The metal-organic frameworks, MIL-53 (Al)-NH2 and MIL-53 (Al), were synthesized and used as the adsorbents for the removal of nitrogen-containing compounds (quinoline and pyrrole) from model fuel. The adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and thermogravimetric analysis. Compared with the adsorption capacity of MIL-53 (Al), MIL-53(Al)-NH2 possesses a higher adsorption capacity for quinoline and pyrrole in the model fuel due to the hydrogen bonding interaction between MIL-53(Al)-NH2 and the nitrogen-containing compounds. The factors affecting the adsorption capacity are the adsorptive time and temperature. Furthermore, the pseudo-first-order and pseudo-second-order adsorption kinetics models were tested. It is found that the pseudo-second-order kinetics model is preferable to characterize the adsorption process. The adsorption isotherms and adsorption thermodynamics of quinoline and pyrrole on the MIL-53(Al)-NH2 were also evaluated. The calculation of separation factor RL and thermodynamic parameters (ΔG0, ΔH0和ΔS0) show that the adsorption of quinoline/pyrrole on the MIL-53(Al)-NH2 is a spontaneous and exothermic process. The used MIL-53 (Al)-NH2 could be regenerated by simple solvent washing with ethanol and reused in the adsorption process.
  • 加载中
    1. [1]

      WANG Z, SUN Z, KONG L, LI G. Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks[J]. J Energy Chem, 2013,22(6):869-875. doi: 10.1016/S2095-4956(14)60266-7

    2. [2]

      AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. J Hazard Mater, 2016,301:259-276. doi: 10.1016/j.jhazmat.2015.08.045

    3. [3]

      AHMED I, JHUNG S H. Adsorptive denitrogenation of model fuel with cucl-loaded metal-organic frameworks (MOFs)[J]. Chem Eng J, 2014,251:35-42. doi: 10.1016/j.cej.2014.04.044

    4. [4]

      HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2016,44(1):99-105.  

    5. [5]

      KHAN N A, JHUNG S H. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel[J]. J Hazard Mater, 2013,260:1050-1056. doi: 10.1016/j.jhazmat.2013.06.076

    6. [6]

      GADDAFI I, DANMALIKI , SALEH T A. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels[J]. J Cleaner Prod, 2016,117:50-55. doi: 10.1016/j.jclepro.2016.01.026

    7. [7]

      AHMED I, JHUNG S H. Remarkable improvement in adsorptive denitrogenation of model fossil fuels with cucl/activated carbon, prepared under ambient condition[J]. Chem Eng J, 2015,279:327-334. doi: 10.1016/j.cej.2015.05.035

    8. [8]

      QIU M, CHEN C, LI W. Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous vocs[J]. Catal Today, 2015,258:132-138. doi: 10.1016/j.cattod.2015.04.017

    9. [9]

      HAN X, LIN H, ZHENG Y. The role of oxygen functional groups in the adsorption of heteroaromatic nitrogen compounds[J]. J Hazard Mater, 2015,297:217-223. doi: 10.1016/j.jhazmat.2015.04.056

    10. [10]

      KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater, 2013,244-245:444-456. doi: 10.1016/j.jhazmat.2012.11.011

    11. [11]

      LIN K Y A, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67(ZIF-67) for removal of malachite green from water[J]. Chemosphere, 2015,139:624-631. doi: 10.1016/j.chemosphere.2015.01.041

    12. [12]

      BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proc Natl Acad Sci USA, 2008,105(33):11623-11627. doi: 10.1073/pnas.0804900105

    13. [13]

      FALCARO P, RICCO R, YAZDI A, IMAZ I, FURUKAWA S, MASPOCH D, AMELOOT R, EVANS J D, DOONAN C J. Application of metal and metal oxide nanoparticles@Mofs[J]. Coord Chem Rev, 2016,307:237-254. doi: 10.1016/j.ccr.2015.08.002

    14. [14]

      WU C. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution[J]. Rsc Adv, 2015,5(100):82127-82137. doi: 10.1039/C5RA15497A

    15. [15]

      CHEN Q, HE Q Q, LV M M, XU Y L, YANG H B, LIU X T, WEI F Y. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Appl Surf Sci, 2015,327:77-85. doi: 10.1016/j.apsusc.2014.11.103

    16. [16]

      HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. J Hazard Mater, 2014,283:329-339.  

    17. [17]

      AHMED I, JHUNG S H. Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups[J]. J Hazard Mater, 2015,283:544-550. doi: 10.1016/j.jhazmat.2014.10.002

    18. [18]

      QIAN X K, YADIAN B, WU R B, LONG Y, ZHOU K, ZHU B, HUANG Y Z. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. Int J Hydrogen Energy, 2013,38(36):16710-16715. doi: 10.1016/j.ijhydene.2013.07.054

    19. [19]

      LI C, XIONG Z H, ZHANG J M, WU C S. The strengthening role of the amino group in metal-organic framework MIL-53(Al) for methylene blue and malachite green dye adsorption[J]. J Chem Eng Data, 2015,60(11):3414-3422. doi: 10.1021/acs.jced.5b00692

    20. [20]

      JIAN M P, LIU B, ZHANG G S, LIU R P, ZHANG X W. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloid Surf A, 2014,465(1):67-76.  

    21. [21]

      XIE L T, LIU D H, HUANG H L, YANG Q Y, ZHONG C L. Efficient capture of nitrobenzene from waste water using metal-organic frameworks[J]. Chem Eng J, 2014,246:142-149. doi: 10.1016/j.cej.2014.02.070

    22. [22]

      HO Y S, CHIANG T H, HSUEH Y M. Removal of basic dye from aqueous solution using tree fern as a biosorbent[J]. Process Biochem, 2005,40(1):119-124. doi: 10.1016/j.procbio.2003.11.035

    23. [23]

      CHENG X, ZHANG A, HOU K, LIU M, WANG Y, SONG C, ZHANG G, GUO X. Size-and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents[J]. Dalton Trans, 2013,42(37):13698-13705. doi: 10.1039/c3dt51322j

    24. [24]

      MORADI S E, DADFARNIA S, SHABANI A M H, EMAMI S. Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): Equilibrium, kinetic and thermodynamic studies[J]. Desalin Water Treat, 2014,159(3):1-13.  

    25. [25]

      LIN S, SONG Z L, CHE G B, REN A, LI P, LIU C B, ZHANG J S. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution[J]. Microporous Mesoporous Mater, 2014,193(2):27-34.  

    26. [26]

      HASAN Z, CHOI E J, JHUNG S H, HASAN Z, CHOI E J, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups[J]. Chem Eng J, 2013,219(3):537-544.  

    27. [27]

      LIU H W, DONG Y H, WANG H Y, YUN L. Adsorption behavior of ammonium by a bioadsorbent-boston ivy leaf powder[J]. J Environ Sci, 2010,22(10):1513-1518. doi: 10.1016/S1001-0742(09)60282-5

    28. [28]

      MCGUIRE C V, FORGAN R S. The surface chemistry of metal-organic frameworks[J]. Chem Commun, 2015,51(25):5199-5217. doi: 10.1039/C4CC04458D

    29. [29]

      AHMED I, KHAN N A, HASAN Z, JHUNG S H. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion[J]. J Hazard Mater, 2013,250-251:37-44. doi: 10.1016/j.jhazmat.2013.01.024

  • 加载中
    1. [1]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    6. [6]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(2)
  • Abstract views(1455)
  • HTML views(634)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return