Citation: SHU Qing, HOU Xiao-peng, TANG Guo-qiang, YU Chang-lin, WANG Jin-fu. Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 65-74. shu

Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction

  • Corresponding author: SHU Qing, shuqing@jxust.edu.cn
  • Received Date: 16 August 2016
    Revised Date: 4 November 2016

    Fund Project: National Natural Science Foundation of China 21206062and Open Project Program of Key Laboratory for Large-Format Battery Materials and System of Huazhong University of Science and Technolog 201504Open Project Program of National United Key Laboratory of Chemical Engineering Tsinghua University, SKL-chE-14A04National Natural Science Foundation of China 21466013Major Project of Natural Science Foundation of Jiangxi Province for Youth 20143ACB21018

Figures(12)

  • The Ce3+-Ti4+-SO42-/MWCNTs catalyst was prepared from the modification treatment of multi walled carbon nanotubes by concentrated sulfuric acid, Ce3+ and Ti4+ through the employing of high temperature impregnation method. Physicochemical properties and structural characteristics of the obtained-catalysts were characterized by means of transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, pyridine adsorption FT-IR spectra, X-ray fluorescence spectroscopy, X-ray diffraction and NH3 temperature programmed desorption. The catalytic activity of Ce3+-Ti4+-SO42-/MWCNTs for the synthesis of biodiesel from the esterification of methanol and oleic acid was investigated. The influence of SO42-/MWCNTs, which was resulted from the addition of Ce3+ and Ti4+, on the structure and catalytic activity was cleared based on the above structure characterization and catalytic activity investigation. The results showed that the conversion of oleic acid reached 93.4% after 5 h reaction at 65℃, when the catalyst/reactants was 1% and the molar ratio of methanol/oleic acid was 12:1. The conversion of oleic acid was 80.8% after the Ce3+-Ti4+-SO42-/MWCNTs were cycled for eight times. Therefore, it can be concluded that this catalyst has high catalytic activity and stability. The high catalytic activity and stability can be explained as follows:the C 1s binding energy of carbon nanotube is much lower than other carbon materials, resulting in easy flow and escape of the electrons in the tubular structure. Thus, the strong interactions will occur among the active groups that have been loaded on the carbon nanotube, which impels Ce3+ and Ti4+ to respectively form stable coordination bonds with SO42-, increases the crystallization degree of the Ce3+-Ti4+-SO42-/MWCNTs catalyst and the active acid sites without increasing the surface defects, and the combination of SO42- and MWCNTs was more stable. In addition, the chemical state of surface atom on the Ti-SO42- was changed due to the strong interaction between SO42- and Ce3+, which strengthened the electron withdrawing ability of S6+ and Ti4+ ions and enhanced the acidity strength of Lewis acid with changing of the acid type. Hence, the Ce3+-Ti4+-SO42-/MWCNTs will be composed by Lewis acid sites mainly, which is favorable for avoiding the occurrence of hydration of acid active sites for the SO42-/MWCNTs catalyst because it was composed of Brönsted acid sites mainly.
  • 加载中
    1. [1]

      LIANG Jin-hua, REN Xiao-qian, WANG Jin-tang, JIANG min, LI Zhen-jiang. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalyst[J]. J Fuel Chem Technol, 2010,38(3):275-280. doi: 10.1016/S1872-5813(10)60033-3 

    2. [2]

      HOSSEINI S, JANAUN J, CHOONG T S Y. Feasibility of honeycomb monolith supportedsugar catalyst to produce biodiesel from palm fattyacid distillate (PFAD)[J]. Process Saf Environ Prot, 2015,98:285-295. doi: 10.1016/j.psep.2015.08.011

    3. [3]

      SHYAMSUNDAR M, SHAMSHUDDIN S Z M, ANIZ C U. Cordierite honeycomb monoliths coated with zirconia and its modified forms for biodiesel synthesis from pongamiaglabra[J]. J Am Oil Chem Soc, 2015,92(3):335-344. doi: 10.1007/s11746-015-2609-4

    4. [4]

      KAUR N, ALI A. Preparation and application of Ce/ZrO2-TiO2/SO42-as solid catalyst for the esterification of fatty acids[J]. Renewable Energy, 2015,64(11):6392-6395.

    5. [5]

      SHU Qing, HOU Xiao-peng, LIU Feng-sheng, TANG Guo-qiang, XU Bao-quan, ZHANG Cai-xia. Studies on the catalytic activity of La-modified phosphotungstic heteropoly acid salt in the synthesis of biodiesel from the esterification of methanol and oleci acid[J]. Nonfer Metal Sci Eng, 2016,7(3):131-136.  

    6. [6]

      SHU Q, ZHANG Q, XU G, WANG J F. Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation[J]. Food Bioprod Process, 2009,87(3):164-170. doi: 10.1016/j.fbp.2009.01.004

    7. [7]

      JUAN J C, JIANG Y J, MENG X J, CAO W L, YARMO M A, ZHANG J C. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst[J]. Mater Res Bull, 2007,42(7):1278-1285. doi: 10.1016/j.materresbull.2006.10.017

    8. [8]

      IGLESIAS J, MELERO J A, MORALES G, MORENO J, SEGURA Y, PANIAGUA M, CAMBRA A, HERNÁNDEZ B. Zr-SBA-15 lewis acid catalyst:Activity in meerwein ponndorf verley reduction[J]. Catalysts, 2015,5(4):1911-1927. doi: 10.3390/catal5041911

    9. [9]

      GUAN Q Q, SHANG H, LIU J, NING P. Biodiesel from transesterification at low temperature by AlCl3catalysis in ethanol and carbon dioxide as cosolvent:Process, mechanism and application[J]. Appl Energy, 2016,164:380-386. doi: 10.1016/j.apenergy.2015.11.029

    10. [10]

      MELERO J A, IGLESIAS J, MORALES G. Heterogeneous acid catalysts for biodiesel production:current status and future challenges[J]. Green Chem, 2009,11(11):1285-1308.  

    11. [11]

      REINOSO D M, DAMIANI D E, TONETTO G M. Efficient production of biodiesel from low-cost feedstock using zinc oleate as catalyst[J]. Fuel Process Technol, 2015,134:26-31. doi: 10.1016/j.fuproc.2015.03.003

    12. [12]

      CHERYL-LOW Y L, THEAM K L, LEE H V. Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate[J]. Energ Convers Manage, 2015,106:932-940. doi: 10.1016/j.enconman.2015.10.018

    13. [13]

      ALMEIDA R M D, NODA L K, GONALVES N S, MENEGHETTI S M P, MENEGHETTI M R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts[J]. Appl Catal A:Gen, 2008,347(1):100-105. doi: 10.1016/j.apcata.2008.06.006

    14. [14]

      HOU Kai-Jun, MENG Ming, ZOU Zhi-Qiang, LV Qian. Effect of La3+ doping on the structures and performance of nano-structured Au/TiO2 catalysts[J]. Chin J Inorg Chem, 2007,23(9):1538-1544.  

    15. [15]

      ZHANG X H, TANG Q Q, YANG D, HU J H. Preparation of poly (p-styrenesulfonic acid) grafted multi-walled carbonnanotubes and their application as a solid-acid catalyst[J]. Mater Chem Phys, 2011,126(1):310-313.  

    16. [16]

      JUMI Y, JI S I, YOUNG S L, HYUNG I K. Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules[J]. Eur Polym J, 2010,46(5):900-909. doi: 10.1016/j.eurpolymj.2010.02.005

    17. [17]

      REDDY G K, HE J, THIEL S W, PINTO N G, SMIRNIOTIS P G. Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas:Mechanistic investigation by XPS[J]. J Phys Chem C, 2015,119(16):8634-8644. doi: 10.1021/jp512185s

    18. [18]

      LI Z J, DENG S B, YU G, HUANG J, LIM V C. As (Ⅴ) and As (Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism[J]. Chem Eng J, 2010,161(1/2):106-113.  

    19. [19]

      LAN L, CHEN S, ZHAO M, GONG M, CHEN Y. The effect of synthesis method on the properties and catalyticperformance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst[J]. J Mol Catal A:Chem, 2014,394(10):10-21.

    20. [20]

      SHU Q, NAWAZ Z, GAO J X, WANG J F. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst:Reaction and separation[J]. Bioresource Technol, 2010,101(14):5374-5384. doi: 10.1016/j.biortech.2010.02.050

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    5. [5]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    6. [6]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    7. [7]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    8. [8]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    16. [16]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(5)
  • Abstract views(1069)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return