Citation: SHU Qing, HOU Xiao-peng, TANG Guo-qiang, YU Chang-lin, WANG Jin-fu. Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 65-74. shu

Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction

  • Corresponding author: SHU Qing, shuqing@jxust.edu.cn
  • Received Date: 16 August 2016
    Revised Date: 4 November 2016

    Fund Project: National Natural Science Foundation of China 21206062and Open Project Program of Key Laboratory for Large-Format Battery Materials and System of Huazhong University of Science and Technolog 201504Open Project Program of National United Key Laboratory of Chemical Engineering Tsinghua University, SKL-chE-14A04National Natural Science Foundation of China 21466013Major Project of Natural Science Foundation of Jiangxi Province for Youth 20143ACB21018

Figures(12)

  • The Ce3+-Ti4+-SO42-/MWCNTs catalyst was prepared from the modification treatment of multi walled carbon nanotubes by concentrated sulfuric acid, Ce3+ and Ti4+ through the employing of high temperature impregnation method. Physicochemical properties and structural characteristics of the obtained-catalysts were characterized by means of transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, pyridine adsorption FT-IR spectra, X-ray fluorescence spectroscopy, X-ray diffraction and NH3 temperature programmed desorption. The catalytic activity of Ce3+-Ti4+-SO42-/MWCNTs for the synthesis of biodiesel from the esterification of methanol and oleic acid was investigated. The influence of SO42-/MWCNTs, which was resulted from the addition of Ce3+ and Ti4+, on the structure and catalytic activity was cleared based on the above structure characterization and catalytic activity investigation. The results showed that the conversion of oleic acid reached 93.4% after 5 h reaction at 65℃, when the catalyst/reactants was 1% and the molar ratio of methanol/oleic acid was 12:1. The conversion of oleic acid was 80.8% after the Ce3+-Ti4+-SO42-/MWCNTs were cycled for eight times. Therefore, it can be concluded that this catalyst has high catalytic activity and stability. The high catalytic activity and stability can be explained as follows:the C 1s binding energy of carbon nanotube is much lower than other carbon materials, resulting in easy flow and escape of the electrons in the tubular structure. Thus, the strong interactions will occur among the active groups that have been loaded on the carbon nanotube, which impels Ce3+ and Ti4+ to respectively form stable coordination bonds with SO42-, increases the crystallization degree of the Ce3+-Ti4+-SO42-/MWCNTs catalyst and the active acid sites without increasing the surface defects, and the combination of SO42- and MWCNTs was more stable. In addition, the chemical state of surface atom on the Ti-SO42- was changed due to the strong interaction between SO42- and Ce3+, which strengthened the electron withdrawing ability of S6+ and Ti4+ ions and enhanced the acidity strength of Lewis acid with changing of the acid type. Hence, the Ce3+-Ti4+-SO42-/MWCNTs will be composed by Lewis acid sites mainly, which is favorable for avoiding the occurrence of hydration of acid active sites for the SO42-/MWCNTs catalyst because it was composed of Brönsted acid sites mainly.
  • 加载中
    1. [1]

      LIANG Jin-hua, REN Xiao-qian, WANG Jin-tang, JIANG min, LI Zhen-jiang. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalyst[J]. J Fuel Chem Technol, 2010,38(3):275-280. doi: 10.1016/S1872-5813(10)60033-3 

    2. [2]

      HOSSEINI S, JANAUN J, CHOONG T S Y. Feasibility of honeycomb monolith supportedsugar catalyst to produce biodiesel from palm fattyacid distillate (PFAD)[J]. Process Saf Environ Prot, 2015,98:285-295. doi: 10.1016/j.psep.2015.08.011

    3. [3]

      SHYAMSUNDAR M, SHAMSHUDDIN S Z M, ANIZ C U. Cordierite honeycomb monoliths coated with zirconia and its modified forms for biodiesel synthesis from pongamiaglabra[J]. J Am Oil Chem Soc, 2015,92(3):335-344. doi: 10.1007/s11746-015-2609-4

    4. [4]

      KAUR N, ALI A. Preparation and application of Ce/ZrO2-TiO2/SO42-as solid catalyst for the esterification of fatty acids[J]. Renewable Energy, 2015,64(11):6392-6395.

    5. [5]

      SHU Qing, HOU Xiao-peng, LIU Feng-sheng, TANG Guo-qiang, XU Bao-quan, ZHANG Cai-xia. Studies on the catalytic activity of La-modified phosphotungstic heteropoly acid salt in the synthesis of biodiesel from the esterification of methanol and oleci acid[J]. Nonfer Metal Sci Eng, 2016,7(3):131-136.  

    6. [6]

      SHU Q, ZHANG Q, XU G, WANG J F. Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation[J]. Food Bioprod Process, 2009,87(3):164-170. doi: 10.1016/j.fbp.2009.01.004

    7. [7]

      JUAN J C, JIANG Y J, MENG X J, CAO W L, YARMO M A, ZHANG J C. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst[J]. Mater Res Bull, 2007,42(7):1278-1285. doi: 10.1016/j.materresbull.2006.10.017

    8. [8]

      IGLESIAS J, MELERO J A, MORALES G, MORENO J, SEGURA Y, PANIAGUA M, CAMBRA A, HERNÁNDEZ B. Zr-SBA-15 lewis acid catalyst:Activity in meerwein ponndorf verley reduction[J]. Catalysts, 2015,5(4):1911-1927. doi: 10.3390/catal5041911

    9. [9]

      GUAN Q Q, SHANG H, LIU J, NING P. Biodiesel from transesterification at low temperature by AlCl3catalysis in ethanol and carbon dioxide as cosolvent:Process, mechanism and application[J]. Appl Energy, 2016,164:380-386. doi: 10.1016/j.apenergy.2015.11.029

    10. [10]

      MELERO J A, IGLESIAS J, MORALES G. Heterogeneous acid catalysts for biodiesel production:current status and future challenges[J]. Green Chem, 2009,11(11):1285-1308.  

    11. [11]

      REINOSO D M, DAMIANI D E, TONETTO G M. Efficient production of biodiesel from low-cost feedstock using zinc oleate as catalyst[J]. Fuel Process Technol, 2015,134:26-31. doi: 10.1016/j.fuproc.2015.03.003

    12. [12]

      CHERYL-LOW Y L, THEAM K L, LEE H V. Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate[J]. Energ Convers Manage, 2015,106:932-940. doi: 10.1016/j.enconman.2015.10.018

    13. [13]

      ALMEIDA R M D, NODA L K, GONALVES N S, MENEGHETTI S M P, MENEGHETTI M R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts[J]. Appl Catal A:Gen, 2008,347(1):100-105. doi: 10.1016/j.apcata.2008.06.006

    14. [14]

      HOU Kai-Jun, MENG Ming, ZOU Zhi-Qiang, LV Qian. Effect of La3+ doping on the structures and performance of nano-structured Au/TiO2 catalysts[J]. Chin J Inorg Chem, 2007,23(9):1538-1544.  

    15. [15]

      ZHANG X H, TANG Q Q, YANG D, HU J H. Preparation of poly (p-styrenesulfonic acid) grafted multi-walled carbonnanotubes and their application as a solid-acid catalyst[J]. Mater Chem Phys, 2011,126(1):310-313.  

    16. [16]

      JUMI Y, JI S I, YOUNG S L, HYUNG I K. Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules[J]. Eur Polym J, 2010,46(5):900-909. doi: 10.1016/j.eurpolymj.2010.02.005

    17. [17]

      REDDY G K, HE J, THIEL S W, PINTO N G, SMIRNIOTIS P G. Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas:Mechanistic investigation by XPS[J]. J Phys Chem C, 2015,119(16):8634-8644. doi: 10.1021/jp512185s

    18. [18]

      LI Z J, DENG S B, YU G, HUANG J, LIM V C. As (Ⅴ) and As (Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism[J]. Chem Eng J, 2010,161(1/2):106-113.  

    19. [19]

      LAN L, CHEN S, ZHAO M, GONG M, CHEN Y. The effect of synthesis method on the properties and catalyticperformance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst[J]. J Mol Catal A:Chem, 2014,394(10):10-21.

    20. [20]

      SHU Q, NAWAZ Z, GAO J X, WANG J F. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst:Reaction and separation[J]. Bioresource Technol, 2010,101(14):5374-5384. doi: 10.1016/j.biortech.2010.02.050

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

Metrics
  • PDF Downloads(5)
  • Abstract views(1014)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return