Citation: JI Ting-ting, YANG Xiao-xuan, WANG Ya-jing, WANG Yu-he. Steam reforming of phenol for producing hydrogen over nickel support on MgO prepared by different methods[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1131-1137. shu

Steam reforming of phenol for producing hydrogen over nickel support on MgO prepared by different methods

  • Corresponding author: WANG Yu-he, wangyuhe@hrbnu.edu.cn
  • Received Date: 9 May 2016
    Revised Date: 29 June 2016

    Fund Project: Program for Scientific and Technological Innovation Team Construction in University of Heilongjiang Province 2011TD010Overseas Scholars Program of Department of Education, Heilongjiang Province 1155h019

Figures(6)

  • MgO-supported nickel catalysts were prepared by impregnation and hydrothermal coprecipitation methods; they were characterized by XRD, N2 sorption, H2-TPR, TEM and TG and used in the steam reforming of biomass oil model compound-phenol for hydrogen production. The results indicated that the NiO/MgO solid solution prepared by the impregnation method displays higher surface area (60.6 m2/g) and larger pore diameter (10.1 nm), in comparison with that prepared by hydrothermal coprecipitation. After reduction, the mesoporous Ni/MgO catalyst obtained from impregnation exhibits small and uniform Ni nanoparticles (5.0-6.0 nm) with high dispersion (19.44%). As high surface area is favorable for the dispersion of Ni nanoparticles and mesoporous structure can promote the mass transfer of reactants and products, the Ni/MgO catalyst exhibits high activity as well as excellent coke resistance ability and long-term stability in the steam reforming of phenol.
  • 加载中
    1. [1]

      AZADI P, SYED K M, FARNOOD R. Catalytic gasification of biomass model compound in near-critical water[J]. Appl Catal A: Gen, 2009,358(1):65-72. doi: 10.1016/j.apcata.2009.01.041

    2. [2]

      VAN ROSSUM G, KERSTEN S R A, VAN SWAAIJ W P M. Catalytic and noncatalytic gasification of pyrolysis oil[J]. Ind Eng Chem Res, 2007,46(12):3959-3967. doi: 10.1021/ie061337y

    3. [3]

      ARMAROLI N, BALZANI V. The hydrogen issue[J]. ChemSusChem, 2011,4(1):21-36. doi: 10.1002/cssc.v4.1

    4. [4]

      LI C, SUZUKI K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview[J]. Renewable Sustainable Energy Rev, 2009,13(3):594-604. doi: 10.1016/j.rser.2008.01.009

    5. [5]

      XIE Deng-yin, ZHANG Su-ping, CHEN Zhi-yuan, CHEN Zhen-qi, XU Qing-li. Co and Cu modified Ni/Al2O3 steam reforming catalysts for hydrogen production from model bio-oil[J]. J Fuel Chem Technol, 2015,43(3):302-308.  

    6. [6]

      WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol, 2015,43(12):1470-1475.  

    7. [7]

      YANG X, WANG Y, WANG Y. Significantly improved catalytic performance of Ni-based MgO catalyst in steam reforming of phenol by inducing mesostructure[J]. Catalysts, 2015,5(4):1721-1736. doi: 10.3390/catal5041721

    8. [8]

      CHEN L, JAENICKE S, CHUAH G K. Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials[J]. Microporous Mater, 1997,12(4):323-330.  

    9. [9]

      JEONG H J, AN K H, LIM S C, PARK M, CHANG J, PARK S, EUM S J, YANG C W, PARK C, LEE Y H. Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni-MgO by thermal chemical vapor deposition[J]. Chem Phys Lett, 2003,380(3/4):263-268.  

    10. [10]

      ROGGENBUCK J, TIEMANN M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J Am Chem Soc, 2005,127(4):1096-1097. doi: 10.1021/ja043605u

    11. [11]

      YANG X, WANG Y, LI M, SUN B, LI Y, WANG Y. Enhanced hydrogen production by steam reforming of acetic acid over a Ni catalyst supported on mesoporous MgO[J]. Energy Fuels, 2016,30(3):2198-2203. doi: 10.1021/acs.energyfuels.5b02615

    12. [12]

      WEI Y, WANG Y, ZHU J, WU Z. In-situ coating of SBA-15 with MgO: Direct synthesis of mesoporous solid bases from strong acidic systems[J]. Adv Mater, 2003,15(22):1943-1945. doi: 10.1002/(ISSN)1521-4095

    13. [13]

      WANG N, YU X, SHEN K, CHU W, QIAN W. Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen[J]. Int J Hydrogen Energy, 2013,38(23):9718-9731. doi: 10.1016/j.ijhydene.2013.05.097

    14. [14]

      LING Z, ZHENG M, DU Q, WANG Y, SONG J, DAI W, ZHANG L, JI G, CAO J. Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method[J]. Solid State Sci, 2011,13(12):2073-2079. doi: 10.1016/j.solidstatesciences.2010.01.013

    15. [15]

      BI Q, DU X, LIU Y, CAO Y, HE H, FAN K. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J]. J Am Chem Soc, 2012,134(21):8926-8933. doi: 10.1021/ja301696e

    16. [16]

      ZHONG L, HU J, WAN L, SONG W. Facile synthesis of nanoporous anatase spheres and their environmental applications[J]. Chem Commun, 2008(10):1184-1186. doi: 10.1039/b718300c

    17. [17]

      YU C, ZHANG L, SHI J, ZHAO J, GAO J, YAN D. A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties[J]. Adv Funct Mater, 2008,18(10):1544-1554. doi: 10.1002/(ISSN)1616-3028

    18. [18]

      LIU D, QUEK X, WAH H H A, ZENG G, LI Y, YANG Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts[J]. Catal Today, 2009,148(3/4):243-250.  

    19. [19]

      ZHANG L, PAN L, NI C, SUN T, ZHAO S, WANG S, WANG A, HU Y. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2003,38:4397-4406.

    20. [20]

      CAO L, MAN T, KRUK M. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander[J]. Chem Mater, 2009,21(6):1144-1153. doi: 10.1021/cm8012733

    21. [21]

      YU M, ZHU K, LIU Z, XIAO H, DENG W, ZHOU X. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B: Environ, 2014,148-149:177-190. doi: 10.1016/j.apcatb.2013.10.046

    22. [22]

      BENGAARD H S, NØRSKOV J K, SEHESTED J, CLAUSEN B S, NIELSEN L P, MOLENBROEK A M, NIELSEN J R R. Steam reforming and graphite formation on Ni catalysts[J]. J Catal, 2002,209(2):365-384. doi: 10.1006/jcat.2002.3579

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(0)
  • Abstract views(1008)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return