Citation: Zhou Qingxiang, Liu Yang, Ke Ming. Research Progress of Catalysts for Isobutane Direct Dehydrogenation to Isobutene[J]. Chemistry, ;2017, 80(9): 835-844. shu

Research Progress of Catalysts for Isobutane Direct Dehydrogenation to Isobutene

  • Corresponding author: Ke Ming, mwyl123@sina.com
  • Received Date: 16 January 2017
    Accepted Date: 18 April 2017

Figures(7)

  • The differences between isobutane direct dehydrogenation and oxydehydrogenation were summarized from the perspective of thermodynamics and reaction mechanism. The catalysts for the direct dehydrogenation of isobutane to isobutene, including PtSn-、CrOx-、GaOx-base and metal sulfide catalyst, are reviewed in terms of the nature of active center, deactivation-regeneration, the promoters and carriers. The advantages and disadvantages of the catalysts and the current research direction were analyzed. Other types of dehydrogenation catalysts were summarized, including Mo/MgAl2O4, carbon-based material, Co-, Ni2P-, VOx-based catalysts, etc. The problems of current dehydrogenation technology and the future research direction were analyzed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

    5. [5]

       

    6. [6]

      Q J Zhu, M Takiguchi, T Setoyama et al. Catal. Lett., 2011, 141(5):670~677. 

    7. [7]

      J F Ding, Z F Qin, S W Chen et al. J. Fuel Chem. Technol., 2010, 38(4):458~461. 

    8. [8]

      L Horiuti, M Polanyi. Transac. Faraday Soc., 1934, 30:1164~1172. 

    9. [9]

      R D Cortright, P E Levin, J A Dumesic. Ind. Eng. Chem. Res., 1998, 37(5):1717~1723. 

    10. [10]

      S M K Airaksinen, M E Harlin, A O I Krause. Ind. Eng. Chem. Res., 2002, 41(23):5619~5626. 

    11. [11]

      J J Sattler, J Ruiz-Martinez, E Santillan-Jimenez et al. Chem. Rev., 2014, 114(20):10613~10653. 

    12. [12]

    13. [13]

       

    14. [14]

      Y Zhang, Y Zhou, L Wan et al. Fuel Proc. Technol., 2011, 92(8):1632~1638. 

    15. [15]

       

    16. [16]

      N S Nesterenko, O A Ponomoreva, V V Yuschenko et al. Appl. Catal. A, 2003, 254(2):261~272. 

    17. [17]

      Z Nawaz. Rev. Chem. Eng., 2015, 31(5):413~436.

    18. [18]

      B V Vora. Top. Catal., 2012, 55(19~20):1297~1308. 

    19. [19]

      Y Nagai, T Hirabayashi, K Dohmae et al. J. Catal., 2006, 242(1):103~109. 

    20. [20]

      L W Lin, T Zhang, J L Zang et al. Appl. Catal., 1990, 67(1):11~23. 

    21. [21]

      R D Cortright, J A Dumesic. J. Catal., 1995, 157(2):576~583. 

    22. [22]

      B M Nagaraja, C H Shin, K D Jung. Appl. Catal. A, 2013, 467:211~223. 

    23. [23]

      C L Yu, H Y Xu, Q J Ge et al. J. Mol. Catal. A, 2007, 266(1~2):80~87. 

    24. [24]

      M H Lee, B M Nagaraja,K Y Lee et al. Catal. Today, 2014, 232(4):53~62. 

    25. [25]

      A Virnovskaia, S Morandi, E Rytter et al. J. Phys. Chem. C, 2007, 111(40):14732~14742. 

    26. [26]

      B K Vu, M B Song, I Y Ahn et al. Catal. Today, 2011, 164(1):214~220. 

    27. [27]

      G J Siri, G R Bertolini, M L Caselle et al. Mater. Lett., 2005, 59(18):2319~2324. 

    28. [28]

      B M Nagaraja, H Jung, D R Yang et al. Catal. Today, 2014, 232:40~52. 

    29. [29]

      L Y Bai, Y M Zhou, T W Zhang et al. Catal. Lett., 2009, 129(3):449~456. 

    30. [30]

      J Silvestre-Albero, J C Serrano-Ruiz, A Sepvlveda-Escribano et al. Appl. Catal. A, 2005, 292(1):244~251. 

    31. [31]

      G Siddiqi, P Sun, V Gavita et al. J. Catal., 2010, 274(2):200~206. 

    32. [32]

      P Sun, S Georges, M Chi et al. J. Catal., 2010, 274(2):192~199. 

    33. [33]

      A D Ballarini, P Zgolicz, I M J Vilella et al. Appl. Catal. A, 2010, 381(1~2):83~91. 

    34. [34]

      S A Bocanegra, A A Castro, O A Scelza et al. Appl. Catal. A, 2007, 333(1):49~56. 

    35. [35]

      H Seo, K Lee, G Hong et al. J. Nanosci. Nanotech., 2015, 15(10):8318~8323. 

    36. [36]

      M Setnicka, Z Tisler, D Kubicka et al. Top. Catal., 2015, 58(14):866~876.

    37. [37]

      R D Cortright, J M Hill, J A Dumesic. Catal. Today, 2000, 55(3):213~223. 

    38. [38]

      K G Azzam, G Jacobs, W D Shafer et al. Appl. Catal. A, 2010, 390(1~2):264~270. 

    39. [39]

      C Jaye, M Tilyard. Fuel Proc. Technol., 2007, 88(9):883~889. 

    40. [40]

      B K Vu, M B Song, I Y Ahn et al. Appl. Catal. A, 2011, 400(1~2):25~33. 

    41. [41]

      V Galvita, G Siddiqi, P Sun et al. J. Catal., 2010, 271(2):209~219. 

    42. [42]

      P L D Cola, R Glaser, J Weitkamp. Appl. Catal. A, 2006, 306(143):85~97.

    43. [43]

      Y Zhang, Y Zhou, J Shi et al. J. Mol. Catal. A, 2014, 381(1):138~147. 

    44. [44]

      S J Zhou, Y M Zhou, Y W Zhang et al. J. Mol. Catal. Sci., 2014, 49(3):1170~1178.

    45. [45]

      S Delsarte, F Mauge, P Grange. J. Catal., 2001, 202(1):1~13. 

    46. [46]

      S Bocanegra, A Ballarini, P Zgolicz et al. Catal. Today, 2009, 143(3):334~340.

    47. [47]

      Z Nawaz, F Baksh, J Zhu et al. J. Ind. Eng. Chem., 2013, 19(2):540~546. 

    48. [48]

      J C Serrano-Ruiz, A Sepulveda-Escribano, F Rodriguez-Reinoso. J. Catal., 2007, 246(1):158~165. 

    49. [49]

      M Ohta, Y Ikeda, A Igarashi. Appl. Catal. A, 2004, 266(2):229~233. 

    50. [50]

      B Gu, S He, X Rong et al. Catal. Lett., 2016, 146(8):1415~1422. 

    51. [51]

      A H Dong, K Wang, S Z Zhu et al. Fuel Proc. Technol., 2017, 158:218~225. 

    52. [52]

      R Grabowski, B Grzybowska, J Slczynski et al. Appl. Catal. A, 1996, 144(1~2):335~341. 

    53. [53]

      M Hoang, J F Mathews, K C Pratt. J. Catal., 1997, 171(1):320~324. 

    54. [54]

      A Hakuli, A Kytokivi, A O I Krause et al. J. Catal., 1996, 161(1):393~400. 

    55. [55]

      E Rombi, M G Cutrufello, V Solinas et al. Appl. Catal. A, 2003, 251(2):255~266. 

    56. [56]

      V Z Vladimir, R Fridman, M Severance. Appl. Catal. A, 2016, 523:39~53. 

    57. [57]

      B M Weckhuysen, R A Schoonheydt. Catal. Today, 1999, 51(2):223~232. 

    58. [58]

      D Sanfilippo, I Miracca. Catal. Today, 2006, 111(1~2):133~139. 

    59. [59]

      D R Fang, J B Zhao, W J Li et al. J. Energy Chem., 2015, 24(1):101~107. 

    60. [60]

      R L Puurunen, B M Weckhuysen, J. Catal., 2002, 210(2):418~430. 

    61. [61]

      B M Weckhuysen, L M D Ridder, P J Grobet et al. J. Phys. Chem., 1995, 99(1):320~326. 

    62. [62]

      P P Li, W Z Lang, K Xia et al. Appl. Catal. A, 2016, 522:172~179. 

    63. [63]

      S D Rossi, G Ferraris, S Fremitti et al. Appl. Catal. A, 1993, 106(1):125~141. 

    64. [64]

      S T Korhonen, S M K Airaksinen, M A Banares et al. Appl. Catal. A, 2007, 333(1):30~41. 

    65. [65]

      S Udomsak, R G Anthony. Ind. Eng. Chem. Res., 1996, 35(1):47~53. 

    66. [66]

      S Kilicarslan, M Dogan, T Dogu. Ind. Eng. Chem. Res., 2013, 52(10):3674~3682.

    67. [67]

      T A Bugrova, N N Litvyakova, G V Mamontov. Kinet. Catal., 2015, 56(6):758~763. 

    68. [68]

      T Otroshchenko, J Radnik, M Schneider et al. Chem. Commun., 2016, 52(52):8164~8167. 

    69. [69]

       

    70. [70]

      B Zheng, W Hua, Y Yue et al. J. Catal., 2005, 232(1):143~151. 

    71. [71]

      N S Nesterenko, O A Ponomoreva, V V Yuschenko et al. Appl. Catal. A, 2003, 254(2):261~272. 

    72. [72]

      G Wang, C Li, H Shan. Catal. Sci. Technol., 2016, 6(9):3128~3136. 

    73. [73]

      J Han, G Jiang, S Han et al. Catalysts, 2016, 6(1):13. 

    74. [74]

      G Wang, Z Meng, J Liu et al. ACS Catal., 2013, 3(12):2992~3001. 

    75. [75]

      Y N Sun, Y N Gao, Y Wu et al. Catal. Commun., 2015, 60:42~45. 

    76. [76]

      G Wang, C Li, H Shan. ACS Catal., 2014, 4(4):1139~1143. 

    77. [77]

      G Wang, C Gao, X Zhu et al. ChemCatChem, 2014, 6(8):2305~2314. 

    78. [78]

      Y N Sun, L Tao, T You et al. Chem. Eng. J., 2014, 244(10):145~151. 

    79. [79]

      G Wang, C Li, H Shan et al. Ind. Eng. Chem. Res., 2013, 52(27):13297~13304.

    80. [80]

      Y Li, J Zhang, J Wang et al. Chin. J. Catal., 2015, 36(8):1214~1222. 

    81. [81]

      G Wang, X Zhu, J Zhang et al. RSC Adv., 2014, 4(100):57071~57082. 

    82. [82]

       

    83. [83]

      Y L Xu, H X Sang, K Wang et al. Appl. Surf. Sci., 2014, 316:163~170. 

    84. [84]

      Y L Xu, X T Wang, L Rong. React. Kinet. Mech. Catal., 2014, 113(2):393~406. 

    85. [85]

      M A Chaar, D Patel, M C Kung et al. J. Catal., 1987, 105(2):483~498. 

    86. [86]

      Y P Tian, P Bai, S M Liu et al. Fuel Proc. Technol., 2016, 151:31~39. 

    87. [87]

      U Rodemerck, S Sokolov, M Stoyanova et al. J. Catal., 2016, 338:174~183. 

    88. [88]

      Z Zhang, Y Li, J Wang et al. Catal. Sci. Technol., 2016, 6:4863~4871. 

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(15)
  • Abstract views(2318)
  • HTML views(416)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return