Citation: LIU Yang, YANG Xin-fang, LEI Fu-lin, XIAO Yun-han. Steam gasification characteristics of Zhundong coal with additive CaO at medium temperature[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 265-272. shu

Steam gasification characteristics of Zhundong coal with additive CaO at medium temperature

  • Corresponding author: YANG Xin-fang, yangxinfang@iet.cn
  • Received Date: 12 October 2017
    Revised Date: 29 January 2018

    Fund Project: the National Key Research and Development Program of China 2016YFE0102500The project was supported by the National Key Research and Development Program of China (2016YFE0102500)

Figures(6)

  • The steam gasification characteristics of Zhundong coal with additive CaO at medium temperature of 700-750℃ were investigated by Thermal Gravimetric Analyzer (TGA). The Brunauer-Emmett-Teller (BET) specific surface area of the coal char was tested by N2 adsorption, and the different occurrence modes of alkali metals in the coal were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The results show that the soluble sodium could catalyze the gasification reaction effectively and the water-washed coal has the highest activity. The additive CaO and the inherent sodium have a synergistic effect during the gasification, and the optimal Ca/C molar ratio is 1.0. The kinetic parameters were calculated using the homogeneous model (HM), the shrinking core model (SCM) and the modified volumetric model (MVM), respectively. The results indicate that the MVM is better to represent the char steam gasification reaction, and its activation energy calculated by the MVM is 160.90 kJ/mol.
  • 加载中
    1. [1]

      FU Zi-wen, WANG Chang-an, WENG Qing-song, CHE De-fu. Experimental investigation for effect of water washing on Zhundong coal properties[J]. J Xi'an Jiaotong Univ, 2014,48(3):54-60.  

    2. [2]

      DING Hao-ran, ZHENG Ying, LIU Xu-hui, LUO Cong, ZHENG Chu-guang. Study on characteristics of H2/H2O gasfication of Zhundong Coal[J]. J China Coal Soc, 2015,40(11):2674-2682.  

    3. [3]

      ZHANG H X, GUO X W, ZHU Z P. Effect of temperature on gasification performance and sodium transformation of Zhundong coal[J]. Fuel, 2017,189:301-311. doi: 10.1016/j.fuel.2016.10.097

    4. [4]

      SONG Guo-liang, QI Xiao-bin, SONG Wei-jian, LV Qing-gang. Migration characteristics of alkali metals in Zhundong high-alkali coal from Xingjiang during fluidized gasification process[J]. Chin J Process Eng, 2015,15(4):541-547. doi: 10.12034/j.issn.1009-606X.215210

    5. [5]

      MCCULLOUGH D P, E YK, P J V, ASHMAN P J, MULLINGER P J. Investigation of agglomeration and defluidization during spouted-bed gasification of high-sodium, high-sulfur south Australian lignite[J]. Energy Fuels, 2011,25(7):2772-2781. doi: 10.1021/ef2002537

    6. [6]

      DONG Qian. Characteristics study on pyrolysis and gasification of Zhundong coal[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Sciences, 2015. 

    7. [7]

      LIN S Y, SUZUKI Y, HATANO H, HARADA M. Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method)[J]. Energy Fuels, 2001,15(2):339-1440. doi: 10.1021/ef000089u

    8. [8]

      JOSE C, TOLEDO J, GREGORIA M. Steam gasification of coal at low-medium (6002 capture in fluidized bed at atmospheric pressure:The effect of inorganic species. 1. literature review and comments[J]. Ind Eng Chem Res, 2006,45:6137-6146. doi: 10.1021/ie0602658

    9. [9]

      GE H J, SHEN L H, GU H M, SONG T, JIANG S X. Combustion performance and sodium absorption of ZhunDong coal in a CLC process with hematite oxygen carrier[J]. Appl Therm Eng, 2016,94:40-49. doi: 10.1016/j.applthermaleng.2015.10.043

    10. [10]

      LIU Jing, WANF Zhi-hua, XIANF Fei-peng, HUANF Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    11. [11]

      ZHU C, QU S J, ZHANG J, WANG Y, ZHANG Y H. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal[J]. Fuel, 2016,190:189-197.  

    12. [12]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-Zhong, LÜ Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838.  

    13. [13]

      JIN H, CHEN Y N, GE Z W, LIU S K, REN C S, GUO L J. Hydrogen production by Zhundong coal gasification in supercritical water[J]. Int J Hydrogen Energy, 2015,40(46):16096-16103. doi: 10.1016/j.ijhydene.2015.09.003

    14. [14]

      LIU H P, CHEN T P, LI Y, SONG Z Y, WANG S W, WU S H. Temperature rise characteristics of ZhunDong coal during microwave pyrolysis[J]. Fuel Process Technol, 2016,148:317-323. doi: 10.1016/j.fuproc.2016.03.017

    15. [15]

      ZHANG K, LI Y, WANG Z H, LI Q, WHIDDON R, HE Y, CEN K F. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016,185:701-708. doi: 10.1016/j.fuel.2016.08.038

    16. [16]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG T, MIKULČIĆ H, DUIĆ N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    17. [17]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Effect of pretreatment methods on the determination of alkali metal content in high alkaili metal Zhundong coal[J]. J Fuel Chem Technol, 2016,44(2):162-167.  

    18. [18]

      WEI Xiao-fang, LIU Tie-feng, HUANF Jie-jie, FANG Yi-tian, WANG Yang. Study of the gasification reactivity of high-sodium coal and washed coals[J]. Coal Convers, 2008,31(3):10-13.  

    19. [19]

      QUYN D M, WU H, HAYASHI JI, LI CZ. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal (Ⅳ):Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    20. [20]

      WANG Xian-hua, CHEN Han-ping, WANG Jing, XIN Fen, YANG Hai-ping. Influence of mineral matters on biomass pyrolysis characteristics[J]. J Fuel Chem Technol, 2008,36(6):679-683.  

    21. [21]

      ZHAO Bing, WANG Jia-rui, CHEN Fan-min, WANG Xiao-yue, LI Xiao-jiang. Hydrothermal treatment to remove sodium from high sodium coal and its influence on combustion characteristics[J]. J Fuel Chem Technol, 2014,42(12):1416-1422.  

    22. [22]

      MIMS C A, PABST J K. Alkali-catalyzed carbon gasification kinetics:Unification of H2O, D2O and CO2 reactivities[J]. J Catal, 1987,107(1):209-220. doi: 10.1016/0021-9517(87)90286-7

    23. [23]

      WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel, 2009,88(9):1572-1579. doi: 10.1016/j.fuel.2008.12.017

    24. [24]

      MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification and indices representing reactivity[J]. Fuel, 1989,68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X

    25. [25]

      ZHANG Z G, KYOTANI T, TOMITA A. Dynamic behavior of surface oxygen complexes during oxygen-chemisorption and subsequent temperature-programmed desorption of calcium-loaded coal chars[J]. Energy Fuels, 1989,3(5):556-571.  

    26. [26]

      OHTSUKA Y, ASAMI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997,39(1/2):111-125.  

    27. [27]

      LEVENSPIEL O. Chemical Reaction Engineering[M]. New York:Jonh Wiley and Sons, 1999.

    28. [28]

      MOLINA A, MONDRAGON F. Reactivity of coal gasification with steam and CO2[J]. Fuel, 1998,77(15):1831-1839. doi: 10.1016/S0016-2361(98)00123-9

    29. [29]

      KASAOKA S, SAKATA Y, TONG C. Kinetic evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with steam[J]. Int Chem Eng, 1985,25(1):160-175.  

    30. [30]

      CHENG Xiu-xiu, HUANG Ying-hua, REN De-qing. The relationship between pore structure of coal chars and gasification activities[J]. J Fuel Chem Technol, 1987,15(8):261-267.  

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    13. [13]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(4)
  • Abstract views(1179)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return