Citation: Chen Hengye, Liu Rui, Fu Haiyan, She Yuanbin. Quantum Dots and Their Application in Rapid Detection for Food Safety[J]. Chemistry, ;2020, 83(5): 418-426. shu

Quantum Dots and Their Application in Rapid Detection for Food Safety

Figures(2)

  • The development of rapid detection technology for harmful substances in food is of great significance to food safety and national health. As a kind of nanoparticle with extraordinary photoelectric properties, quantum dots have been widely used in the field of food safety rapid detection in recent years. In this paper, the detection mechanism of quantum dot visualization sensor, its detection of harmful substances such as pesticide, veterinary drug and heavy metals in food, and the non-target detection of illegal food addition were reviewed. The existing problems and future developments were also discussed.
  • 加载中
    1. [1]

      Hunter R E, Riederer A M, Ryan P B. J. Agric. Food Chem., 2010, 58(3): 1396~1402. 

    2. [2]

      Yoshioka N, Ichihashi K. Talanta, 2008, 74(5): 1408~1413. 

    3. [3]

      Zhu X, Wang S, Liu Q, et al. J. Agric. Food Chem., 2009, 57(23): 11075~11080. 

    4. [4]

      Zou T, He P, Yasen A, et al. Food Chem., 2013, 138(2~3): 1742~1748.

    5. [5]

      McMullin D, Mizaikoff B, Krska R. Anal. Bioanal. Chem., 2015, 407(3): 653~660.

    6. [6]

      Luo H, Huang Y, Lai K, et al. Food Control, 2016, 68: 229~235. 

    7. [7]

      Pereira C G, Andrade J, Ranquine T, et al. LWT-Food Sci. Technol., 2018, 97: 180~186. 

    8. [8]

      Martins A R, Talhavini M, Vieira M L, et al. Food Chem., 2017, 229: 142~151. 

    9. [9]

      Chung I, Shimizu K T, Bawendi M G. PNAS, 2003, 100(2): 405~408. 

    10. [10]

      Yu J S, Kim S H, Man M T, et al. Mater. Lett., 2019, 253: 367~371. 

    11. [11]

      Dutta S, Chatterjee S, Mallem K, et al. Renew. Energ., 2019, 144: 2~14. 

    12. [12]

      Kwon J B, Kim S W, Lee J S, et al. Org. Electron., 2019, (74): 166~171.

    13. [13]

      Liu W, Wei F, Xu G, et al. J. Nanosci. Nanotechnol., 2016, 16(6): 6511~6519. 

    14. [14]

      Liao Y, Cui X, Chen G, et al. Food Agric. Immunol., 2019, 30(1): 522~532. 

    15. [15]

      Wang B, Wang Q, Cai Z, et al. LWT-Food Sci. Technol., 2015, 61(2): 368~376. 

    16. [16]

      Li W, Shi Y, Hu X, et al. Food Control, 2019, (106):106~704.

    17. [17]

      Hu O, Xu L, Fu H, et al. Anal. Chim. Acta, 2018, 1008: 103~110. 

    18. [18]

      Chen H, Wang S, Fu H, et al. Spectrochim. Acta A, 2019: 117683.

    19. [19]

      Mo G, He X, Zhou C, et al. Sens. Actuat. B, 2018, 266: 784~792. 

    20. [20]

      Medintz I L, Mattoussi H. Phys. Chem. Chem. Phys., 2009, 11(1): 17~45.

    21. [21]

      Yang J, Zhang Z, Pang W, et al. Sens. Actuat. B, 2019, 301: 127014. 

    22. [22]

      Lee J S, Kim H, Algar W R. J. Phys. Chem. C, 2017, 121(51): 28566~28575. 

    23. [23]

      Fan Y, Yu M, Xu Y, et al. Sens. Actuat. B, 2019, 281: 623~633. 

    24. [24]

      Tang Z, Liu X, Su B, et al. J. Hazard. Mater., 2019: 121678.

    25. [25]

      Sheng W, Liu Y, Li S, et al. Food Anal. Methods, 2018, 11(3): 675~685. 

    26. [26]

      Dacres H, Michie M, Wang J, et al. Biochem. Biophys. Res. Commun., 2012, 425(3): 625~629. 

    27. [27]

      Kim G B, Kim Y P. Theranostics, 2012, 2(2): 127. 

    28. [28]

      Xing Y, So M, Koh A L, et al. Biochem. Bioph. Res. Commun., 2008, 372(3): 388~394. 

    29. [29]

      Zhao J, Fan Z. Spectrochim. Acta A, 2019: 117323.

    30. [30]

      Angizi S, Hatamie A, Ghanbari H, et al. ACS Appl. Mater. Interf., 2018, 10(34): 28819~28827. 

    31. [31]

    32. [32]

      Schiffman J D, Balakrishna R G. Sens. Actuat. B, 2018, 258: 1191~1214. 

    33. [33]

      Li X, Li J, Kuang H, et al. Anal. Chim. Acta, 2013, 802: 82~88. 

    34. [34]

      Hu Q, Xu X, Li Z, et al. Biosens. Bioelectron., 2014, 54: 64~71. 

    35. [35]

      Zhang K, Zhou H, Mei Q, et al. J. Am. Chem. Soc., 2011, 133(22): 8424~8427. 

    36. [36]

      Hao T, Wei X, Nie Y, et al. Sens. Actuat. B, 2016, 230: 70~76. 

    37. [37]

      Liu Z, Liu S, Yin P, et al. Anal. Chim. Acta, 2012, 745: 78~84. 

    38. [38]

      Huang S, Xiao Q, Li R, et al. Anal. Chim. Acta, 2009, 645(1~2): 73~78.

    39. [39]

    40. [40]

      Zhao Q, Rong X, Ma H, et al. J. Hazard. Mater., 2013, 250: 45~52.

    41. [41]

      Gui R, An X, Su H, et al. Talanta, 2012, 94: 257~262. 

    42. [42]

      Rao H, Dai Y, Ge H, et al. New J. Chem., 2017, 41(14): 6630~6637. 

    43. [43]

      Zhang Z, Li Y, Li P, et al. Food Chem., 2014, 146: 314~319. 

    44. [44]

      Park J C, Choi S Y, Yang M Y, et al. ACS Appl. Mater. Interf., 2019, 11(37): 33525~33534. 

    45. [45]

      Wang Q, Zhang D. Anal. Methods, 2018, 10(31): 3884~3889. 

    46. [46]

      Yuan J, Gaponik N, Eychmuller A. Anal. Chem., 2012, 84(11): 5047~5052. 

    47. [47]

      Guo C, Wang J, Cheng J, et al. Biosens. Bioelectron., 2012, 36(1): 69~74. 

    48. [48]

      Song E, Yu M, Wang Y, et al. Biosens. Bioelectron., 2015, 72: 320~325. 

    49. [49]

      Le T, Zhang Z, Wu J, et al. Anal. Bioanal. Chem., 2018, 410(2): 565~572. 

    50. [50]

      Lu Y, Li X, Zhang L, et al. Anal. Chem., 2008, 80(6): 1883~1890. 

    51. [51]

      He Y, Wen X, Zhang B, et al. Sens. Actuat. B, 2018, 265: 20~26. 

    52. [52]

      Wang C, Qian J, Wang K, et al. Biosens. Bioelectron., 2015, 68: 783~790. 

    53. [53]

      Jiang X, Jiang N, Zhang H, et al. Anal. Bioanal. Chem., 2007, 389(2): 355~368.

    54. [54]

      Caro E, Masqué N, Marcé R M, et al. J. Chromatogr. A, 2002, 963(1~2): 169~178.

    55. [55]

      Da Silva M S, Viveiros R, Aguiar-Ricardo A, et al. RSC Adv., 2012, 2(12): 5075~5079. 

    56. [56]

      Chao M R, Hu C W, Chen J L. Microchim. Acta, 2014, 181(9~10): 1085~1091.

    57. [57]

      Vahid B. J. Fluores., 2017, 27(4): 1339~1347. 

    58. [58]

      pik A, Menaker A, Reut J, et al. Proc. Est. Acad. Sci., 2009, 58(1).

    59. [59]

      Xu N, Lai K, Fan Y, et al. LWT-Food Sci. Technol., 2019, 116: 108547. 

    60. [60]

      Hua X, Liu X, Shi H, et al. RSC Adv., 2014, 4(80): 42445~42453. 

    61. [61]

       

    62. [62]

      Deng W, Chen P, Hu P, et al. Sens. Actuat. B, 2019, 292: 180~186. 

    63. [63]

      Zhang F, Liu Y, Ma P, et al. Talanta, 2019, 204: 13~19. 

    64. [64]

      Wang Q, Yin Q, Fan Y, et al. Talanta, 2019, 199: 46~53. 

    65. [65]

      Sheng W, Chang Q, Shi Y, et al. Microchim. Acta, 2018, 185(9): 404. 

    66. [66]

    67. [67]

      Yang S, Fan W, Wang D, et al. Anal. Methods, 2019, 11: 3829~3836. 

    68. [68]

      Satnami M L, Vaishanav S K, Nagwanshi R, et al. J. Disper. Sci. Technol., 2016, 37(2): 196~204. 

    69. [69]

      Xie R, Peng X. J. Am. Chem. Soc., 2009, 131(30): 10645~10651. 

    70. [70]

      Jiao Z, Zhang P, Chen H, et al. Sens. Actuat. B, 2019, 295: 110~116. 

    71. [71]

      Chen B, Liu J, Yang T, et al. Talanta, 2019, 191: 357~363. 

    72. [72]

      Na M, Chen Y, Han Y, et al. Food Chem., 2019, 288: 248~255. 

    73. [73]

       

    74. [74]

      Xu L, Lu D, Shi Q, et al. Spectrochim. Acta A, 2019, 221: 117212. 

    75. [75]

      Xu L, Wei L, Shi Q, et al. Food Anal. Methods, 2019, 12(11): 2614~2622. 

    76. [76]

      Xu L, Xu X, Xiong H, et al. Sens. Actuat. B, 2014, 203: 697~704. 

    77. [77]

      Hai N N, Chinh V D, Thuy U T D, et al. Int. J. Nanotechnol., 2013, 10(3~4): 137~145.

    78. [78]

      Bala R, Swami A, Tabujew I, et al. Biosens. Bioelectron., 2018, 104: 45~49. 

    79. [79]

      Najafi S, Safari M, Amani S, et al. J. Mater. Sci-Mater El., 2019, 30(15): 14233~14242. 

    80. [80]

      Yang B, Zhang Y, Zhang Q, et al. J. Mater. Sci-Mater El., 2019, 30(20): 18794~18801. 

    81. [81]

      Malik R, Pinnaka A K, Kaur M, et al. J. Chem. Technol. Biot., 2019, 94(4): 1082~1090. 

    82. [82]

      Yuphintharakun N, Nurerk P, Chullasat K, et al. Spectrochim. Acta A, 2018, 201: 382~391. 

    83. [83]

      Saleviter S, Yap W F, Daniyal W M E M M, et al. Opt. Express, 2019, 27(22): 32294~32307. 

    84. [84]

      Liu J, Zhang Q, Xue W, et al. Nanomaterials, 2019, 9(9): 1294. 

    85. [85]

      Elmizadeh H, Soleimani M, Faridbod F, et al. Spectrochim. Acta A, 2019, 211: 291~298. 

    86. [86]

      Juine R N, Amirthapandian S, Dhara S, et al. Sens. Actuat. B, 2018, 273: 1687~1693. 

    87. [87]

      Wang J, Li D, Qiu Y, et al. Sens. Actuat. B, 2019, 301: 126984. 

    88. [88]

      Sadeghi S, Olieaei S. Spectrochim. Acta A, 2019, 223: 117349. 

    89. [89]

      Masteri-Farahani M, Mosleh N. J. Mater. Sci-Mater El., 2019: 1~7.

    90. [90]

    91. [91]

    92. [92]

  • 加载中
    1. [1]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    14. [14]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    15. [15]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    18. [18]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    19. [19]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(20)
  • Abstract views(1937)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return