Citation: ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, ZHAO Chun-lei, YUAN Ji, HU Chao-shuai, YAN Li-dong. Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1036-1043. shu

Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal

  • Corresponding author: ZHAO Xue-fei, zhao_xuefei@sohu.com
  • Received Date: 22 May 2018
    Revised Date: 20 July 2018

    Fund Project: the National Nature Science Foundation of China U1361212the Youth Fund of University of Science and Technology Liaoning 2017QN06the Youth Fund of the Education Department of Liaoning Province 2017LNQN04The project was supported by the National Nature Science Foundation of China (U1361212), the Youth Fund of the Education Department of Liaoning Province (2017LNQN04) and the Youth Fund of University of Science and Technology Liaoning (2017QN06)

Figures(4)

  • Crucible cokes were obtained by co-carbonization of Zhongwei lean coal as main coking coal and thermal extract from Datong long-flame coal as additive. The degree of regularization on anisotropic structure (DRAS) of coke was obtained by quantitative calculation of optical tissue from polarized microscopy. The crystallite size (Lc), aromatic condensation (La) and degree of graphitization (g) have been quantitative calculated by combination of XRD and curve-fitted method. Furthermore, Raman spectrum and curve-fitted method have been used to obtain content of ideal graphite microcrystalline of coke. The quantitative analysis of optical micro-component on obtained cokes shows that addition of thermal extract from Datong long-flame coal has a significant influence on optical micro-component of coke. There is good consistency on DRAS and microcrystalline parameters, which is calculated by the method of polarized microscopy and XRD and Raman spectrum, respectively. Moreover, the micro-strength index of coke is highly correlated with its microstructure.
  • 加载中
    1. [1]

      SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking properties of coal[J]. Fuel, 2007,186(10/11):1396-1401.

    2. [2]

      SHUI H F, ZHAO W J, SHAN C J, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Process Technol, 2014,118(2):64-68.  

    3. [3]

      SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking property of coal[J]. Fuel, 2007,86(10):1396-1401.  

    4. [4]

      KOSZOREK A, KRZESIŃSKA M, PUSZ S, PUSZ B, KWIECIŃSKA B. Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability[J]. Int J Coal Geol, 2009,77(2):363-371.  

    5. [5]

      SHUI H F, WU Y, WANG Z C, LEI Z P, LIN C H, REN S B, PAN C X, KANG S G. Hydrothermal treatment of a sub-bituminous coal and its use in coking blends[J]. Energy Fuels, 2013,27(1):138-144. doi: 10.1021/ef301539x

    6. [6]

      NORINAGA K, HAYASHI J I, KATO R, CHIBA T. Reduction in thermo plasticity of Illinois No. 6 coal by heat treatment in refluxing chlorobenzene[J]. Energy Fuels, 2000,14(2):511-512. doi: 10.1021/ef990137e

    7. [7]

      SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of hyper-coal to produce H2 and synthesis gas[J]. Fuel, 2008,87(4):491-497.

    8. [8]

      TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper coal addition on coke strength and thermoplasticity of coal blends[J]. Energy Fuels, 2008,22(3):1779-1783. doi: 10.1021/ef7007375

    9. [9]

      CHANG C M, WHANG T J, HUANG D S, WANG D, TSAI S T. Thermoplasticity and strength improvement of coking coal by addition of coal extracts[J]. Fuel, 2014,117(1):364-371.  

    10. [10]

      YOSHIDA T, LI T, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "hypercoal" production (2):effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004,86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003

    11. [11]

      OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004,85(8):947-967.

    12. [12]

      KASHIMURA N, TAKANOHASHI T, MASAKI K, SHISHIDO T, SATO S, MATSUMURA A, SAITO I. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy Fuels, 2006,20(5):2088-2092. doi: 10.1021/ef060194p

    13. [13]

      NISHIBATA Y. Effect of hyper coal addition to coal on coke quality[J]. Proceedings icsti, 2006:640-643.  

    14. [14]

      BRASHAW W, MAMONE V. Structural characterization of graphitic cokes and product thereof[M]. Qxford:Qxford University Press, 1976.

    15. [15]

      MARSH H, CORNFORD C. Mesophase:The precursor to graphitizable carbon[M]. Qxford:Qxford University Press, 1976.

    16. [16]

      QIAN Shu-an, SONG Xiao-zhen, FAN Ren-li, LI Chun-feng. The microstructural characteristics of needle cokes-new concept on evaluation of needle coke properties[J]. J Fuel Chem Technol, 1981,9(2):105-122.  

    17. [17]

      WU Xiao-ying. Study of XRD on the crystallite structure characteristics of high temperature coke of coals[J]. J Xi'an Ming Inst, 1999,19(2):158-160. doi: 10.3969/j.issn.1672-9315.1999.02.015

    18. [18]

      ANDRIANI G F, WALSH N. Physical properties and textural parameters of calcarenitic rocks:Qualitative and quantitative evaluations[J]. Eng Geol, 2002,67(1):5-15.  

    19. [19]

      SMEDOWSKI Y, KRZESIN S M, KWAS N W, KOZANECKI M. Development of ordered structures in the high-temperature(HT) cokes from binary and ternary coal blends studied by meansof X-ray diffraction and raman spectroscopy 2011 American chemical society[J]. Energy Fuels, 2011,25(7):3142-3149. doi: 10.1021/ef200609t

    20. [20]

      FANG Yong-zheng, CAO Yin-ping, JIN Ming-lin, YANG Jun-he, QIAN Zhan-fen. Effect of anthracite in coal blend on micro-crystal and pore structure of coke[J]. Iron Steel, 2006,41(10):16-18.  

    21. [21]

      ZHANG Zhuo, XIE Feng, CHENG Huan, WANG Qi. Coke microcrystalline texture and its effect on coke reactivity[J]. J Fuel Chem Technol, 2018, 46(4):16-18.

    22. [22]

      ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, LAI Shi-quan, GAO Li-juan. Influence of pyrolytic extracts of long flame coal to the coking properties of individual coal[J]. Fuel Chem Process, 2016,47(1):1-3. doi: 10.3969/j.issn.1001-3709.2016.01.001

    23. [23]

      NOMURA S, KATO K, NAKAGAWA T, KOMAKI I. The effect of plastic addition on coal caking properties during carbonization[J]. Fuel, 2003,82:1775-1782. doi: 10.1016/S0016-2361(03)00120-0

    24. [24]

      SHUI H F, HE F, WU Y, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends[J]. Energy Fuels, 2015,29(13):1558-1563.

    25. [25]

      YAO Zhao-zhang, ZHENG Ming-dong. Coking Technology[M]. 3rd ed. Beijing:Metallurgical Industry Press, 2015.

    26. [26]

      MANOJ B, KUNJOMANA A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012,7(4):3127-3134.

    27. [27]

      MORGA R, JOLONEK I, KRUSZEWSKA K, SZULIK W. Relationships between quality of coals, resulting cokes, and micro-raman spectral characteristics of these cokes[J]. Int J Coal Geol, 2015,144(1)130.  

    28. [28]

      SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018

    29. [29]

      MORGA R. Micro-raman spectroscopy of carbonized semifusinite and fusinite[J]. Int J Coal Geol, 2011,87(3):253-267.  

    30. [30]

      BEYSSAC O, GOFFÉ B, PETITET J P, IGNEUX E, MOREAU M, ROUZAUD J N. On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy[J]. Spectrochim Acta A, 2003,59(10):2267-2276. doi: 10.1016/S1386-1425(03)00070-2

    31. [31]

      ZHU Y M, ZHAO X F, GAO L J, CHENG J X, LV J, LAI S Q. Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum[J]. Spectrosc Spect Anal, 2017,37(6):1919-1924.  

    32. [32]

      ZHU Y M, ZHAO X F, GAO L J, LV J, CHENG J X, LAI S Q. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. J Chem Soc Pakistan, 2018,40(2):343-353.

  • 加载中
    1. [1]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    7. [7]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    8. [8]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    9. [9]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    10. [10]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    17. [17]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    20. [20]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

Metrics
  • PDF Downloads(6)
  • Abstract views(936)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return