Citation: Xie Kangjun, Zhang Shupeng, Gao Juanjuan, Song Haiou. Design and Fabrication of Functionalized Adsorption Electrode Materials for Capacitive Deionization[J]. Chemistry, ;2017, 80(7): 631-636, 620. shu

Design and Fabrication of Functionalized Adsorption Electrode Materials for Capacitive Deionization

Figures(4)

  • Capacitive deionization (CDI) is currently widely applicable one of the desalination technologies owing to its advantages, such as energy efficiency, environmental protection and high practicability, etc. Electrode materials, as core of this technology, should have high specific surface area, better conductivity, good hydrophilicity, proper porous structure, excellent stability and so on. These properties would efficiently not only enhance desalination efficiency of CDI devices, but also keep excellent cycling stability, even in the complex systems. In the light of difference in preparation, structure-activity relationship of electrodes, the recent advances in the application of various functional electrode materials have been reviewed, combining with our previous work.
  • 加载中
    1. [1]

      Q Liu, Y Guo, Z Chen et al. Appl. Catal. B, 2016, 183:231~241.

    2. [2]

      W Zhang, H Xu, Y Chen et al. ACS Appl. Mater. Interf., 2013, 5(11):4603~4606.

    3. [3]

      S Porada, R Zhao, A van der Wal et al. Prog. Mater Sci., 2013, 58(8):1388~1442.

    4. [4]

      H Yoon, J Lee, S R Kim et al. Desalination, 2016, 392:46~53.

    5. [5]

      S Y Huang, C S Fan, C H Hou. J. Hazard. Mater., 2014, 278:8~15.

    6. [6]

      A Rommerskirchen, Y Gendel, M Wessling. Electrochem. Commun., 2015, 60:34~37.

    7. [7]

      M E Suss, S Porada, X Sun et al. Energy Environ. Sci., 2015, 8(8):2296~2319.

    8. [8]

      X W Li, X S Zhang, H Wang et al. Energy Convers. Manage., 2016, 114:303~311.

    9. [9]

      S Porada, L Borchardt, M Oschatz et al. Energy Environ. Sci., 2013, 6(12):3700~3712.

    10. [10]

      S Porada, L Weinstein, R Dash et al. ACS Appl. Mater. Interf., 2012, 4(4):1194~1199.

    11. [11]

      K Laxman, M T Z Myint, R Khan et al. Electrochim. Acta, 2016, 166:329~337.

    12. [12]

      C Feng, C H Hou, S Chen et al. Chemosphere, 2013, 91(5):623~628.

    13. [13]

      X W Li, X S Zhang, H Wang et al. Appl. Energy, 2016, 171:405~414.

    14. [14]

      X Duan, W Liu, L Chang. J. Taiwan Inst. Chem. Eng., 2016, 62:132~139.

    15. [15]

      T Wu, G Wang, F Zhan et al. Water Res., 2016, 93:30~37.

    16. [16]

      L Han, K G Karthikeyan, M A Anderson et al. J. Colloid Interf. Sci., 2014, 430:93~99.

    17. [17]

      Y Qu, T F Baumann, J G Santiago et al. Environ. Sci. Technol., 2015, 49(16):9699~9706.

    18. [18]

      Y Liu, K Xu, X Zhang et al. Curr. Appl. Phys., 2016, 16(5):520~526.

    19. [19]

    20. [20]

      R Kumar, S S Gupta, S Katiyar et al. Carbon, 2016, 99:375~383.

    21. [21]

      Q Dong, G Wang, B Qian et al. Electrochim. Acta, 2014, 137:388~394.

    22. [22]

      C H Hou, C Y Huang. Desalination, 2013, 314:124~129.

    23. [23]

      H Liu, H Song, X Chen et al. J. Power Sources, 2015, 285:303~309.

    24. [24]

      B Chen, Y Wang, Z Chang et al. RSC Adv., 2014, 6(8):6730~6736.

    25. [25]

      M S Gaikwad, C Balomajumder. Anal. Lett., 2016, 49(11):1641~1655.

    26. [26]

      Y Liu, T Lu, Z Sun et al. J. Mater. Chem. A, 2015, 3(16):8693~8700.

    27. [27]

      J Yang, L Zou, N R Choudhury. Electrochim. Acta, 2013, 91:11~19.

    28. [28]

      S Kim, J Lee, C Kim et al. Electrochim. Acta, 2016, 203:265~271.

    29. [29]

      Y Cai, Y Wang, X Han et al. J. Electroanal. Chem., 2016, 768:72~80.

    30. [30]

      Y Liu, W Ma, Z Cheng et al. Desalination, 2013, 326:109~114.

    31. [31]

    32. [32]

      H Li, Y L Zhi, W Shi et al. RSC Adv., 2016, 6(15):11967~11972.

    33. [33]

    34. [34]

      X Gu, Y Yang, Y Hu et al. ACS Sustain. Chem. Eng., 2015, 3(6):1056~1065

    35. [35]

      C Kim, J Lee, S Kim et al. Desalination, 2014, 342:70~74.

    36. [36]

      F Ahmad, S J Khan, Y Jamal et al. Desalin. Water Treat., 2015, 57(17):7659~7666.

    37. [37]

      H Yin, S Zhao, J Wan et al. Adv. Mater., 2013, 25(43):6270~6276.

    38. [38]

      K Wei, Y Wang, W Han et al. J. Power Sources, 2016, 318:57~65.

    39. [39]

      H Wang, D Zhang, T Yan et al. J. Mater. Chem., 2012, 22(45):23745~23748.

    40. [40]

      B Jia, L Zou. Carbon, 2012, 50(6):2315~2321.

    41. [41]

      L Liu, L Liao, Q Meng et al. Carbon, 2015, 90:75~84.

    42. [42]

    43. [43]

      H Song, Y Wu, S Zhang et al. Electrochim. Acta, 2016, 205:161~169.

    44. [44]

    45. [45]

      C Yan, L Zou, R Short. Desalination, 2014, 333(1):101~106.

    46. [46]

      J Benson, I Kovalenko, S Boukhalfa et al. Adv. Mater., 2013, 25(45):6625~6632.

    47. [47]

      Y Zhang, Y Wang, S Xu et al. Synth. Met., 2010, 160(13):1392~1396.

    48. [48]

      Q Liu, Y Wang, Y Zhang et al. Synth. Met., 2012, 162(162):655~661.

    49. [49]

      T Wu, G Wang, Q Dong et al. Electrochim. Acta, 2015, 176(176):426~433.

    50. [50]

      W Huang, Y Zhang, S Bao et al. Desalination, 2014, 340(1):67~72.

    51. [51]

    52. [52]

      A M Dehkhoda, E Gyenge, N Ellis. Biomass Bioenergy, 2016, 87:107~121.

    53. [53]

      L Chao, Z Liu, G Zhang et al. J. Mater. Chem. A, 2015, 3(24):12730~12737.

    54. [54]

    55. [55]

      S Zhao, T Yan, H Wang et al. Appl. Surf. Sci., 2016, 369:460~469.

    56. [56]

      Y Li, I Hussain, J Qi et al. Sep. Purif. Technol., 2016, 165:190~198.

    57. [57]

      X Xu, Z Sun, D H Chua et al. Sci. Rep., 2014, 5:1~9.

  • 加载中
    1. [1]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    2. [2]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    5. [5]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    7. [7]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    8. [8]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    10. [10]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

Metrics
  • PDF Downloads(23)
  • Abstract views(2486)
  • HTML views(622)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return