Citation: WANG Ming-hong, WANG Liang-liang, LIU Jun, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Promoting effect of transition metal on low-temperature deNOx activity of CeO2@TiO2 catalyst for selective catalytic reduction[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 497-504. shu

Promoting effect of transition metal on low-temperature deNOx activity of CeO2@TiO2 catalyst for selective catalytic reduction

  • Corresponding author: FEI Zhao-yang, zhaoyangfei@njtech.edu.cn
  • Received Date: 30 December 2016
    Revised Date: 27 February 2017

    Fund Project: the National Natural Science Foundation of China 21306089Innovation Foundation of Jiangsu Province SJLX15-0347

Figures(10)

  • Transition metal M(M=Mn, Co, Fe and Cu) modified amorphous CeO2@TiO2 catalysts were prepared via a spontaneous deposition strategy. The low-temperature deNOx activity of M-CeO2@TiO2 for selective catalytic reduction was investigated. XRD, TEM, N2 adsorption-desorption, H2-TPR, NH3-TPD and in-situ FT-IR were used to study the structure, surface property and low-temperature NH3-SCR reaction performance of M-CeO2@TiO2. The results showed that the M-CeO2@TiO2 had better low-temperature oxidation reducibility and more surface acid. Cu doping had the most significant promoting effect on low-temperature deNOx activity for selective catalytic reduction. During the low-temperature NH3-SCR reaction, both the L-H and E-R mechanisms existed over the Cu-CeO2@TiO2 and the L-H mechanism could play a pivotal role due to the "fast SCR"process.
  • 加载中
    1. [1]

      HU H, CAI S X, LIH R. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts:Structure-activity relationships and in situ RIFTs analysis[J]. ACS Catal, 2015,5(10):6069-6077. doi: 10.1021/acscatal.5b01039

    2. [2]

      LU X N, SONG C Y, CHANG C C. Manganese oxides supported on TiO2-GR nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Ind Eng Chem Res, 2014,53(29):11601-11610. doi: 10.1021/ie5016969

    3. [3]

      ZHANG Guang-xue, ZHOU An-qi, FAN Hai-yan, WANG Jin-qing, CHI Zuo-he. Preparation of Fe-Ce oxide SCR denitration catalyst and its performance study[J]. J Fuel Chem Technol, 2015,43(10):1267-1272.  

    4. [4]

      ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014,42(9):1102-1110.  

    5. [5]

      TANG F, XU B, SHI H. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2010,94(2):71-76.  

    6. [6]

      YANG J, YANG Q, SUN J, LIU Q C, ZHAO D. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:147-156.  

    7. [7]

      PAPPAS D K, BONINGARI T, BOOLCHAND P, SMIRNIOTIS P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3[J]. J Catal, 2016,334:1-13. doi: 10.1016/j.jcat.2015.11.013

    8. [8]

      YAO W, LIU Y, WANG X, WENG X, ZHANG H, WU Z. The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2016,120(1):221-229. doi: 10.1021/acs.jpcc.5b07734

    9. [9]

      CHANG H, WU Q, ZHANG T, LI M, SUN X, LI J, DUAN L, HAO J. Design strategies for CeO2-MoO3 catalysts for de NOx and Hg0 oxidation in the presence of HCl:the significance of the surface acid-base properties[J]. Environ Sci Technol, 2015,49(20):12388-12394. doi: 10.1021/acs.est.5b02520

    10. [10]

      LIU Jun, WANG Liang-liang, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Structure and properties of amorphous CeO2@TiO2catalyst and its performance in the selective catalytic reduction of NO with NH3[J]. J Fuel Chem Technol, 2016,44(8):954-960. doi: 10.1016/S1872-5813(16)30043-3 

    11. [11]

      LI Y, WAN Y, LI Y P, ZHAN S H, GUAN Q X, TIAN Y. Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3hexagonal microsheets[J]. ACS Appl Mater Interfaces, 2016,8(8):5224-5233. doi: 10.1021/acsami.5b10264

    12. [12]

      HAN J, MEEPRASERT J, MAITARAD P. Investigation of the facet-dependent catalytic performance of Fe2O3/CeO2 for the selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2016,120(3):1523-1533. doi: 10.1021/acs.jpcc.5b09834

    13. [13]

      HU H, CAI S, LI H. Mechanistic aspects of de NOx processing over TiO2 supported Co-Mn oxide catalysts:Structure-activity relationships and in situ DRIFTs analysis[J]. Acs Catal, 2015,5(10):6069-6077. doi: 10.1021/acscatal.5b01039

    14. [14]

      XU Xi-hua, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. CeO2nanoclusters stabilized in aerogel matrix as catalysts for Cl2 production from HCl oxidation[J]. CIESC J, 2015,66(9):3421-3427.  

    15. [15]

      ARAMEDNDIA M A, BORAU V, JIMENEZ C. Synthesis and characterization of ZrO2 as an acid-base catalyst dehydration-dehydrogenation of propan-2-ol[J]. J Chem Soc, 1997,93(7):1431-1438.  

    16. [16]

      CASAPU M, KROCHER O, MEHRING M, NACHTEGAAL M, BORCA C. Characterization of nb-containing MnOx-CeO2catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2010,114(21):9791-9801. doi: 10.1021/jp911861q

    17. [17]

      YANG S, XIONG S, LIAO Y, XIAO X, QI F, PENG Y, FU Y, SHAN W, LI J. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel[J]. Environ Sci Technol, 2015,5(4):10354-10362.  

    18. [18]

      GIRAUD F, GEANTET C, GUILHAUME N, GROS S, PORCHERON L, KANNICHE M, BIANCHI D. Experimental microkinetic approach of de-NOx by NH3on V2O5/WO3/TiO2 catalysts.1.Individual heats of adsorption of adsorbed NH3 species on a sulfate-free TiO2 support using adsorption isobars[J]. J Phys Chem C, 2014,118(29):15664-15676. doi: 10.1021/jp502582g

    19. [19]

      BONINGARI A S T, SMIRNIOTIS P. Nickel-doped Mn/TiO2 as an efficient catalyst for low temperature SCR of NO with NH3:Catalytic evaluation and characterizations[J]. J Catal, 2012,288(4):74-83.  

    20. [20]

      ZHANG L, LIL L, CA OY, YAOX J, GECH Y, GAO F. Getting insight into the influence of SO2on TiO2/CeO2for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165(18):589-598.

    21. [21]

      JINR B, LIU Y, WANG Y, WANG L C, WU ZH B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3over Mn-Ce/TiO2catalyst at low temperature[J]. Appl Catal B:Environ, 2014,148-149(4):582-588.  

    22. [22]

      LIU Z M, YI Y, LIJ H, SEONGI W, WANGB Y, CAOX Z, LIZ X. A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia[J]. Chem Commun, 2013,49(70):7726-7728. doi: 10.1039/c3cc43041c

    23. [23]

      PADMANABHA R E, NEERAJA E, THIRUPATHI B, ROBERT P, PANAGIOITS G S. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2catalysts through transient isotopic labeling and in situ FT-IR studies[J]. J Catal, 2012,292(4):53-63.  

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    9. [9]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    20. [20]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(1)
  • Abstract views(1293)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return