Citation: CHANG Qing-hua, LI Hong-jun, CUI Tong-min, FAN Wen-ke, YU Guang-suo, WANG Fu-chen. Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 427-435. shu

Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis

  • Corresponding author: WANG Fu-chen, wfch@ecust.edu.cn
  • Received Date: 28 December 2016
    Revised Date: 27 February 2017

Figures(12)

  • The rapid pyrolysis experiments of Shenfu coal with various moisture content prepared by adding water were conducted in a high-frequency furnace to study the influence of moisture content on the thermal behavior. The gas composition and the structure properties of char were analyzed. The result shows that the gas yield and the maximal release rate decrease when the moisture content of coal increases. After pyrolysis, both BET surface and pore volume increase with increasing moisture. Compared to the char from dry coal pyrolysis, the char from pyrolysis of coal with high moisture content has more developed pore structure with more micropores. Furthermore, the moisture can inhabit the occurrence of pore obstruction and collapse during rapid pyrolysis, and also contribute to the enhancement of the surface roughness and the pore structure complexity.
  • 加载中
    1. [1]

      WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180.  

    2. [2]

      RAMIN, LESLIE, ISAACS. Drying kinetics of lignite, subbituminous coals, and high-volatile bituminous coals[J]. Energy Fuels, 1990,4(5):448-452. doi: 10.1021/ef00023a007

    3. [3]

      LI X C, SONG H, WANG Q, MEESRI C, WALL T, YU J L. Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal[J]. J Environ Sci, 2009,21(s1):127-130.  

    4. [4]

      WANG H H. Kinetic analysis of dehydration of a bituminous coal using the TGA technique[J]. Energy Fuels, 2007,21(6):3070-3075. doi: 10.1021/ef070170y

    5. [5]

      PATISSON F, ETIENNE L, HANROT F, ABLITZER D, HOUZELOT J L. Coal pyrolysis in a rotary kiln:Part I. Model of the pyrolysis of a single grain[J]. Metall Mater Trans B, 2000,31(2):381-390. doi: 10.1007/s11663-000-0056-5

    6. [6]

      DING L, ZHOU Z J, DAI Z H, YU G S. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals[J]. Appl Energy, 2015,155:660-670. doi: 10.1016/j.apenergy.2015.06.062

    7. [7]

      ZHOU Z J, DING L, WU L, LIN S J, CUI T M, YU G S. Comparison of structure and gasification reactivity of rapid pyrolysis chars of coal water slurries and parent coals[J]. Energy Technol, 2014,2(3):284-291. doi: 10.1002/ente.v2.3

    8. [8]

      HAYASHI J, NORINAGA K, YAMASHITA T, TADATOSHI C. Effect of sorbed water on conversion of coal by rapid pyrolysis[J]. Energy Fuels, 1999,13(3):611-616. doi: 10.1021/ef980186b

    9. [9]

      YIP K, WU H W, ZHANG D K. Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification[J]. Energy Fuels, 2007,21(5):2883-2891. doi: 10.1021/ef7002443

    10. [10]

      CAI Z, CLAYTON S, WU H W, HAYASHI J, LI C Z. Effects of dewatering on the pyrolysis and gasification reactivity of Victorian brown coal[J]. Energy Fuels, 2007,21(2):399-404. doi: 10.1021/ef060404y

    11. [11]

      WU Lei, ZHOU Zhi-jie, WANG Xin-jun, YU Guang-suo, WANG Fu-chen. Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis[J]. J Fuel Chem Technol, 2013,41(4):422-429.  

    12. [12]

      CUI Tong-min, LI Chao, ZHOU Zhi-jie, CHANG Qing-hua, GAO Rui, YU Guang-suo, WANG Fu-chen. Rapid pyrolysis characteristic of Shenfu bituminous coal[J]. J Fuel Chem Technol, 2015,43(11):1287-1294.  

    13. [13]

      BUTUZOVA L, MARIA R, KRZTON A, MINKOVA V. The effect of water on the yield and structure of the products of brown coal pyrolysis and hydrogenation[J]. Fuel, 1998,77(6):639-643. doi: 10.1016/S0016-2361(97)00212-3

    14. [14]

      HU Er-feng, ZHANG chun, WU Rong-cheng, FU Xiao-heng, XU Guang-wen. Pyrolysis of coal with different moisture contents in fixed-bed reactor with internals[J]. CIESC J, 2015,66(7):2656-2663.  

    15. [15]

      PRATIONOA W, ZHANG J, CUI J F, WANG Y T, ZHANG L. Influence of inherent moisture on the ignition and combustion of wet Victorian brown coal in air-firing and oxy-fuel modes:Part 1:The volatile ignition and flame propagation[J]. Fuel Process Technol, 2015,138:670-679. doi: 10.1016/j.fuproc.2015.07.008

    16. [16]

      LIU Hui, WU Shao-hua, SUN Rui, XU Rui, QIU Peng-hua, LI Ke-fu, QIN Yu-kun. Specific area and pore structure of lignite char under the condition of fast pyrolysis[J]. Proc CSEE, 2005,25(12):86-90.  

    17. [17]

      XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing:Science Press, 2002.

    18. [18]

      YAO Y, LIU D, TANG D, TANG S, HUANG W. Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J]. Int J Coal Geol, 2008,73(1):27-42. doi: 10.1016/j.coal.2007.07.003

    19. [19]

      PYUN S I, RHEE C K. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J]. Electrochim Acta, 2004,49(24):4171-4780. doi: 10.1016/j.electacta.2004.04.012

    20. [20]

      PFEIFER P, AVNIR D. Chemistry nonintegral dimensions between two and three[J]. Chem Phys, 1983,79(7):3369-3558.  

    21. [21]

      XU Shen-qi. Gasification kinetics study of coal char and unburned carbon in slag[D]. Shanghia:East China University of Science and Technology, 2010.

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(1)
  • Abstract views(1716)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return