Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates
- Corresponding author: LI Shu-yuan, syli@cup.edu.cn
Citation:
SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(1): 1-7.
QIAN Jia-lin, YIN Liang, Oil Shale:Petroleum Alternative[M]. Beijing:China Petrochemical Press, 2011
GAI H, XIAO X, CHENG P, TIAN H, FU J. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Org Geochem, 2014,78(57):69-78.
HOU Dan-dan, LI Dan-dong, SHI Wei-wei. Comprehensive evaluation of Longkou shale oil[J]. J Petrochem Univ, 2011,24(2):43-46.
YANG Qing-chun, ZHOU Huai-rong, YANG Si-yu, QIAN Yu. Research progress on utilization and systemic integration technologies of oil shale[J]. J Chem Ind Eng, 2016,67(1):109-118.
WEN C S, KOBYLINSKI T P. Low-temperature oil shale conversion[J]. Fuel, 1983,62(11):1269-1273. doi: 10.1016/S0016-2361(83)80008-8
MCKEE R H, LYDER E E. The thermal decomposition of shales. I-Heat effects[J]. Ind Eng Chem (United States), 2002,13(7):613-618.
LI Q, HAN X, LIU Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates[J]. Fuel, 2014,121(2):109-116.
ABOURRICHE A K, OUMAM M, HANNACHE H, BIROT M, ABOULIATIM Y, BENHAMMOU A, EL HAFIANE Y, ABOURRICHE A M, PAILLER R, NASLAIN R. Comparative studies on the yield and quality of oils extracted from mroccan oil shale[J]. J Supercrit Fluid, 2013,84(12):98-104.
XIE Fang-fang, WANG Ze, SONG Wen-li, LIN Wei-gang. FT-IR aalysis of oil shales from Huadian Jilin and their pyrolysates[J]. Spectrosc Spect Anal, 2011,31(1):91-94.
OJA V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis field Ionization spectrometry[J]. Fuel, 2015,159(1):759-765.
RU X, CHENG Z, SONG L, WANG H, LI J. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. J Mol Struct, 2012,1030(51):10-18.
LI Shu-yuan, QIAN Jia-lin, QIN Kuang-zong, ZHU Ya-jie. Study on the oil shale pyrolysis kinetics with thermal bitumen as the pyrolysis intermediate[J]. J Fuel Chem Technol, 1987,15(2):24-29.
HAN H, ZHONG N N, HUANG C X, ZHANG W. Pyrolysis kinetics of oil shale from northeast China:Implications from thermogravimetric and rock-eval experiments[J]. Fuel, 2015,159(1):776-783.
MOINE E C, GROUNE K, HAMIDI A E, MARIAM K, MOHAMMED H, SAID A. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale[J]. Energy, 2016,115(1):931-941.
GENG Ceng-ceng, LI Shu-yuan, HE Ji-lai. Determination and indentification of oxygen-containing compounds in Longkou shale oil[J]. J Fuel Chem Technol, 2012,40(5):538-544.
KELEMEN S R, AFEWORKI M, ML G. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy Fuels, 2002,16(6):1507-1515. doi: 10.1021/ef0200828
FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of german low rank coals-parameter study[J]. Fuel, 1999,78(8):923-932. doi: 10.1016/S0016-2361(99)00008-3
FREUDENBERG K. Biosynthesis and constitution of lignin[J]. Nature, 1959,183(183):1152-1155.
PILAWA B, PUSZ S, KRZESIŃSKA M, KOSZOREK A, KWIECIŃSKA B. Application of electron paramagnetic resonance spectroscopy to examination ofcarbonized coal blends[J]. Int J Coal Geol, 2009,77(3/4):372-376.
QIU N S, LI H L, JIN Z J, ZHU Y. Temperature and time effect on the concentrations of free radicalsin coal:Evidence from laboratory pyrolysis experiments[J]. Int J Coal Geol, 2007,69(3):220-228. doi: 10.1016/j.coal.2006.04.002
CHENG H N, WARTELLE L H, KLASSON K T, EDWARDSJ C. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010,48(9):2455-2469. doi: 10.1016/j.carbon.2010.03.016
WANG W, MA Y, LI S Y, SHI J, TENG J S. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy Fuels, 2016,30(2):830-834.
BAI Jing-ru, WANG Qing, WEI Yan-zhen, GUAN Xiao-hui. Acid treatment de-ashing of Huadian oil shale[J]. J CN Univ Pet (Ed Nat Sci), 2010,32(2):150-158.
TREWHELLA M J, POPLETT J F, GRINT A. Structure of green river oil shale kerogen:Determination using solid state 13C NMR specrtoscopy[J]. Fuel, 1986,65(4):541-546. doi: 10.1016/0016-2361(86)90046-3
ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Standard curve method for measuring the content of free radicals in coal[J]. Chin J Magn Reson, 2011,28(2):259-264.
TONG J H, JIANG X M, HAN X X, WANG X. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling[J]. Fuel, 2016,181(1):330-339.
WEI Ai-zhu. Experimental study on free radical reaction mechanism of coal spontaneous combustion[J]. Xuzhou:China University of Mining and Technology. 2008.
PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978,50(2):303-308. doi: 10.1021/ac50024a034
WU Ai-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Study of free radicals in the pyrolysis process of low rank coal[J]. Coal Convers, 2012,35(2):1-5.
LIU J X, JIANG X M, HAN X X, SHEN J, ZHANG H. Chemical properties of superfine pulverized coals. Part 2. Demineralization effects on free radical characteristics[J]. Fuel, 2014,115(12):685-696.
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
■: shale oil; ▲: semicoke; ▼: thermal bitumen
a: 2 μL; b: 5 μL; c: 8 μL; d: 11 μL
a: kerogen; b: 320 ℃; c: 360 ℃; d: 400 ℃; e: 440 ℃; f: 480 ℃
a: 320 ℃; b: 360 ℃; c: 380 ℃; d: 400 ℃; e: 420 ℃
a: 360 ℃; b: 380 ℃; c: 400 ℃; d: 420 ℃; e: 460 ℃
□: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen
□: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen
□: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen