Citation: SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 1-7. shu

Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates

  • Corresponding author: LI Shu-yuan, syli@cup.edu.cn
  • Received Date: 9 July 2017
    Revised Date: 4 October 2017

    Fund Project: "Taishan Scholar" Special Construction Project ts20120518The project was supported by the National Basic Research Program of China 973 Program, 2014CB744302the Scientific Research Foundation of China University of Petroleum 2462015YJRC002The project was supported by the National Basic Research Program of China (973 Program, 2014CB744302), "Taishan Scholar" Special Construction Project (ts20120518) and the Scientific Research Foundation of China University of Petroleum (2462015YJRC002)

Figures(9)

  • In order to describe pyrolysis characterization of Estonia oil shale kerogen, electron paramagnetic resonance (EPR) was carried out to analyze influence of pyrolysis temperature on free radical concentration, g factors and line width (△H) of Estonia kerogen and its pyrolysates. The results show that range of free radical concentration of Estonia oil shale and its pyrolysis oil, thermal bitumen and semi-coke is between 2.29×1014 and 9.16×1014. The free radical concentration and g factor of thermal bitumen is higher than that of semi-coke. The thermal depolymerization of kerogen mainly occurs before 380℃ and intermediate thermal bitumen mainly decomposes above 380℃. The line width of the samples shows that △H of shale oil is much higher than that of semi-coke and thermal bitumen at higher pyrolysis temperature. It means that the interaction between spin particles in free radicals and the interaction between the spin particles and environment in liquids are much more severe than solid samples. Below 380℃, △H of thermal bitumen and semi-coke increases with rising temperature. The interaction between the spin particles and environment was enhanced with pyrolysis proceeding. Above 380℃, △H of thermal bitumen and semi-coke decrease, indicating that the interaction between the spin particles is weaken with the rising temperature.
  • 加载中
    1. [1]

      QIAN Jia-lin, YIN Liang, Oil Shale:Petroleum Alternative[M]. Beijing:China Petrochemical Press, 2011

    2. [2]

      GAI H, XIAO X, CHENG P, TIAN H, FU J. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Org Geochem, 2014,78(57):69-78.  

    3. [3]

      HOU Dan-dan, LI Dan-dong, SHI Wei-wei. Comprehensive evaluation of Longkou shale oil[J]. J Petrochem Univ, 2011,24(2):43-46.  

    4. [4]

      YANG Qing-chun, ZHOU Huai-rong, YANG Si-yu, QIAN Yu. Research progress on utilization and systemic integration technologies of oil shale[J]. J Chem Ind Eng, 2016,67(1):109-118.  

    5. [5]

      WEN C S, KOBYLINSKI T P. Low-temperature oil shale conversion[J]. Fuel, 1983,62(11):1269-1273. doi: 10.1016/S0016-2361(83)80008-8

    6. [6]

      MCKEE R H, LYDER E E. The thermal decomposition of shales. I-Heat effects[J]. Ind Eng Chem (United States), 2002,13(7):613-618.  

    7. [7]

      LI Q, HAN X, LIU Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates[J]. Fuel, 2014,121(2):109-116.  

    8. [8]

      ABOURRICHE A K, OUMAM M, HANNACHE H, BIROT M, ABOULIATIM Y, BENHAMMOU A, EL HAFIANE Y, ABOURRICHE A M, PAILLER R, NASLAIN R. Comparative studies on the yield and quality of oils extracted from mroccan oil shale[J]. J Supercrit Fluid, 2013,84(12):98-104.  

    9. [9]

      XIE Fang-fang, WANG Ze, SONG Wen-li, LIN Wei-gang. FT-IR aalysis of oil shales from Huadian Jilin and their pyrolysates[J]. Spectrosc Spect Anal, 2011,31(1):91-94.  

    10. [10]

      OJA V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis field Ionization spectrometry[J]. Fuel, 2015,159(1):759-765.  

    11. [11]

      RU X, CHENG Z, SONG L, WANG H, LI J. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. J Mol Struct, 2012,1030(51):10-18.  

    12. [12]

      LI Shu-yuan, QIAN Jia-lin, QIN Kuang-zong, ZHU Ya-jie. Study on the oil shale pyrolysis kinetics with thermal bitumen as the pyrolysis intermediate[J]. J Fuel Chem Technol, 1987,15(2):24-29.  

    13. [13]

      HAN H, ZHONG N N, HUANG C X, ZHANG W. Pyrolysis kinetics of oil shale from northeast China:Implications from thermogravimetric and rock-eval experiments[J]. Fuel, 2015,159(1):776-783.  

    14. [14]

      MOINE E C, GROUNE K, HAMIDI A E, MARIAM K, MOHAMMED H, SAID A. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale[J]. Energy, 2016,115(1):931-941.  

    15. [15]

      GENG Ceng-ceng, LI Shu-yuan, HE Ji-lai. Determination and indentification of oxygen-containing compounds in Longkou shale oil[J]. J Fuel Chem Technol, 2012,40(5):538-544.  

    16. [16]

      KELEMEN S R, AFEWORKI M, ML G. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy Fuels, 2002,16(6):1507-1515. doi: 10.1021/ef0200828

    17. [17]

      FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of german low rank coals-parameter study[J]. Fuel, 1999,78(8):923-932. doi: 10.1016/S0016-2361(99)00008-3

    18. [18]

      FREUDENBERG K. Biosynthesis and constitution of lignin[J]. Nature, 1959,183(183):1152-1155.

    19. [19]

      PILAWA B, PUSZ S, KRZESIŃSKA M, KOSZOREK A, KWIECIŃSKA B. Application of electron paramagnetic resonance spectroscopy to examination ofcarbonized coal blends[J]. Int J Coal Geol, 2009,77(3/4):372-376.  

    20. [20]

      QIU N S, LI H L, JIN Z J, ZHU Y. Temperature and time effect on the concentrations of free radicalsin coal:Evidence from laboratory pyrolysis experiments[J]. Int J Coal Geol, 2007,69(3):220-228. doi: 10.1016/j.coal.2006.04.002

    21. [21]

      CHENG H N, WARTELLE L H, KLASSON K T, EDWARDSJ C. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010,48(9):2455-2469. doi: 10.1016/j.carbon.2010.03.016

    22. [22]

      WANG W, MA Y, LI S Y, SHI J, TENG J S. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy Fuels, 2016,30(2):830-834.

    23. [23]

      BAI Jing-ru, WANG Qing, WEI Yan-zhen, GUAN Xiao-hui. Acid treatment de-ashing of Huadian oil shale[J]. J CN Univ Pet (Ed Nat Sci), 2010,32(2):150-158.  

    24. [24]

      TREWHELLA M J, POPLETT J F, GRINT A. Structure of green river oil shale kerogen:Determination using solid state 13C NMR specrtoscopy[J]. Fuel, 1986,65(4):541-546. doi: 10.1016/0016-2361(86)90046-3

    25. [25]

      ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Standard curve method for measuring the content of free radicals in coal[J]. Chin J Magn Reson, 2011,28(2):259-264.  

    26. [26]

      TONG J H, JIANG X M, HAN X X, WANG X. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling[J]. Fuel, 2016,181(1):330-339.  

    27. [27]

      WEI Ai-zhu. Experimental study on free radical reaction mechanism of coal spontaneous combustion[J]. Xuzhou:China University of Mining and Technology. 2008. 

    28. [28]

      PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978,50(2):303-308. doi: 10.1021/ac50024a034

    29. [29]

      WU Ai-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Study of free radicals in the pyrolysis process of low rank coal[J]. Coal Convers, 2012,35(2):1-5.  

    30. [30]

      LIU J X, JIANG X M, HAN X X, SHEN J, ZHANG H. Chemical properties of superfine pulverized coals. Part 2. Demineralization effects on free radical characteristics[J]. Fuel, 2014,115(12):685-696.  

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(4)
  • Abstract views(1522)
  • HTML views(533)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return