Citation: PAN Dan-ping, WU Hao, JIANG Ye-zheng, LIU Ya-ming, XU Qi-sheng, YANG Lin-jun. Improvement in removal of fine particles and SO3 acid mist from desulfurized flue gas with heterogeneous condensation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 113-119. shu

Improvement in removal of fine particles and SO3 acid mist from desulfurized flue gas with heterogeneous condensation

  • Corresponding author: YANG Lin-jun, 101010340@seu.edu.cn
  • Received Date: 8 June 2015
    Revised Date: 27 July 2015

    Fund Project: the Science and Technology Project of Guangdong Power Grid Company K-GD2013-055Scientific Research Fund of Environmental Monitoring in Jiangsu Province 1412The project was supported by the National Natural Science Foundation of China 21276049the Major State Basic Research Development Program of China 2013CB228505

Figures(11)

  • The supersaturated water vapor environment for condensational growth of fine particles (PM2.5) and SO3 acid mist was achieved by adding water vapor or humid air into the limestone-gypsum desulfurized flue gas. The influences of the addition amount of water vapor and humid air as well as the desulfurized flue gas temperature were analyzed based on the property analysis of PM2.5 and SO3 acid mist. The results show that except for coal-fired ash, the desulfurized flue gas also includes CaSO4, CaSO3 and unreacted CaCO3 in PM2.5. The removal efficiency of SO3 acid mist is 35%-55% merely by wet flue gas desulfurization (WFGD) system because SO3 acid mist is mostly submicron particles. PM2.5 and SO3 acid mist can be removed effectively by adding either water vapor or humid air, and the emission concentration decreases with increasing the amount of water vapor or humid air. Moreover, it is found that it is better to add water vapor to establish the supersaturated water vapor environment for lower temperature desulfurized flue gas (≤50-55 ℃), while it is more appropriate to add humid air for higher temperature desulfurized flue gas (≥55-60℃).
  • 加载中
    1. [1]

      WANG Hui, SONG Qiang, YAO Qiang, CHEN Chang-he. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proc CSEE, 2008,28(5):1-7.  

    2. [2]

      MEIJ R, WINKEL H. The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J]. Fuel Process Technol, 2004,85(6/7):641-656.  

    3. [3]

      NIELSEN M T, LIVBJERG H, FOGH C L, JENSEN J N, SIMONSEN P, LUND C, POULSEN K, SANDER B. Formation and emission of fine particles from two coal-fired power plants[J]. Combust Sci Technol, 2002,174(2):79-113. doi: 10.1080/714922606

    4. [4]

      BAO Jing-jing, YANG Lin-jun, YAN Jin-pei, LIU Jin-hui, SONG Shi-juan. Performance of removal of fine particles by WFGD system[J]. CIESC J, 2009,60(5):1260-1267.  

    5. [5]

      GOOCH J P, DISMUKES E B. Formation of sulfate aerosol in a SO2 scrubbing system. Presented at the Formation, Distribution, Impact, and Fate of Sulfur Trioxide in Utility Flue Gas Streams Conference, 1998.

    6. [6]

      SRIVASTAVA R K, MILLER C A. Emissions of sulfur trioxide from coal-fired power plants, Technical publication, Presented at POWER-GEN International 2002, December 10-12, 2002. Orlando, Florida.

    7. [7]

      YANG Lin-jun. Control technology of fine particles from combustion[M]. Beijing: Chemical Industry Press, 2011.

    8. [8]

      JOANNON M, COZZOLINO G, CAVALIERE A, RAGUCCIA R. Heterogeneous nucleation activation in a condensational scrubber for particulate abatement[J]. Fuel Process Technol, 2013,107:113-118. doi: 10.1016/j.fuproc.2012.10.004

    9. [9]

      CALVERT S, JHAVERI N C. Flux force/condensation scrubbing[J]. J Air Pollut Control Assoc, 1974,24(10):946-951. doi: 10.1080/00022470.1974.10469994

    10. [10]

      HEIDENREICH S, VOGT U, BVTTNER H, EBERT F. A novel process to separate submicron particles from gases-a cascade of packed columns[J]. Chem Eng Sci, 2000,55(15):2895-2905. doi: 10.1016/S0009-2509(99)00554-0

    11. [11]

      YANG L J, BAO J J, YAN J P, LIU J H, SONG S J, FAN F X. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation[J]. Chem Eng J, 2010,156(1):25-32. doi: 10.1016/j.cej.2009.09.026

    12. [12]

      BAO Jing-jing. Study on improving the removal of fine particles by heterogeneous condensation in WFGD system[D].Nanjing: Southeast University, 2012.

    13. [13]

      BRACHERT L, MERTENS J, KHAKHARIA P, SCHABER K. The challenge of measuring sulfuric acid aerosols: Number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)[J]. J Aerosol Sci, 2014,67:21-27. doi: 10.1016/j.jaerosci.2013.09.006

    14. [14]

    15. [15]

      WANG Bao-hua, ZHANG Ze-ting, LI Qun-sheng. Research and application of a new type of high efficient mesh mist eliminator[J]. Mod Chem Ind, 2004,24(5):50-53.  

    16. [16]

      FLETCHER N H. The pysics of rainclouds[M]. London: Cambridge University Press, 1962, 386.

    17. [17]

      GORBUNOV B, HAMILTON R, CLEGG N, TOUMI R. Water nucleation on aerosol particles containing both organic and soluble inorganic substances[J]. Atmos Res, 1998,47-48(1):271-283.  

    18. [18]

      XIONG Gui-long, XIN Cheng-yun, YANG Lin-jun, LU Bin. Temperature and humidity characteristics of flue gas from combined wet flue gas desulfurization system and heterogenous condensation[J]. Proc CSEE, 2011,31(8):18-24.  

    19. [19]

      HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J]. Chem Eng Process, 1995,34(3):235-244. doi: 10.1016/0255-2701(94)04009-5

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    7. [7]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    8. [8]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    9. [9]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    10. [10]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    11. [11]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      . . University Chemistry, 2024, 39(3): 0-0.

    14. [14]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    15. [15]

      . 第41卷第3期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(3): -.

    16. [16]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    17. [17]

      . . University Chemistry, 2025, 40(3): 0-0.

    18. [18]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    19. [19]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    20. [20]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

Metrics
  • PDF Downloads(2)
  • Abstract views(657)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return