Citation: TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 661-667. shu

Liquefaction characteristics of Baorixile lignite with syngas and complex solvent

  • Corresponding author: TONG Guo-tong, tonggt@163.com
  • Received Date: 7 March 2019
    Revised Date: 12 April 2019

    Fund Project: Hangzhou Key Laboratory of Green Fine Chemical Engineering Research and Technical Conversion 2015ZD12The project was supported by Hangzhou Key Laboratory of Green Fine Chemical Engineering Research and Technical Conversion (2015ZD12)

Figures(6)

  • The effects of atmosphere, temperature and catalysts on the BRXL lignite liquefaction conversion and the yield of oil, gas, and water were studied with syngas and complex solvents (water+organic solvent), and the characteristics of BRXL lignite liquefaction were also discussed. The results show that the atmosphere of syngas and the temperature of 430-450℃ are beneficial to coal liquefaction reaction under complex solvents system with catalyst. The coal conversion is 81.15%, and the yield of oil, gas, and water reaches to 71.53%. Besides, the composite catalyst (including iron, base, and sulfur) can effectively improve the coal conversion and the yield of oil, gas, and water. The coal conversion and the yield of oil, gas, and water at 430℃ reach to 92.27% and 79.39%, respectively. Also, the composite catalyst can effectively promote the cracking of macromolecules in coal and the enhancement of water-gas shift reaction, resulting in a decrease of asphaltene and an increase of oil yield. Moreover, the polycyclic aromatic hydrocarbons and derivatives in liquefaction oil can be converted to monocyclic aromatic hydrocarbons and derivatives and alkenes olefins during catalytic liquefaction, resulting in a decrease of compound molecular weight and an improvement of oil quality.
  • 加载中
    1. [1]

      FISCHER F, SCHRADER H. The origin and chemical structure of coal[J]. Brennstoff Chem, 1921,2:37-45.  

    2. [2]

      ZHU M, WACHS I E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction:A review[J]. ACS Catal, 2016,6(2):722-732. doi: 10.1021/acscatal.5b02594

    3. [3]

      BIANCO A D, PIERO G D, SERENELLINI S. Conversion of coal in CO/H2O base system:Interaction between water-gas shift reaction catalysts and coal mineral matter[J]. Fuel, 1988,67(6):874-875. doi: 10.1016/0016-2361(88)90167-6

    4. [4]

      TAKEMURA Y, OUCHI K. Catalytic liquefaction of various coals using a mixture of carbon monoxide and water[J]. Fuel, 1983,62(10):1133-1137. doi: 10.1016/0016-2361(83)90052-2

    5. [5]

      HATA K A, WATANABE Y, WADAK , WADA K, MITSUDO T A. Iron sulfate/sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J]. Fuel Process Technol, 1998,56(3):291-304. doi: 10.1016/S0378-3820(98)00058-7

    6. [6]

      LI Q L, CHEN Z, ZHOU Q, LI L, WU S Y. Shengli lignite liquefaction under syngas and complex solvent[J]. J Fuel Chem Technol, 2016,44:257-262. doi: 10.1016/S1872-5813(16)30014-7

    7. [7]

      FENG Wan-lu, WU Shi-yong, YOU Quan, WU You-qing, ZHENG Hua-an, MIN Xiao-jian. Effect of moisture amount on liquefaction of Xilinhaote coal under syngas[J]. J East China Univ Technol:Nat Sci Ed, 2017,43(2):156-161.  

    8. [8]

      YOU Q, WU S Y, WU Y Q, HUANG S, GAO J S, SHANG J X, MIN X J, ZHENG H A. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Process Technol, 2017,156:54-161. doi: 10.1016/j.fuproc.2016.09.022

    9. [9]

      BIANCO A D, GIRARDI E, STROPPA F. Liquefaction of Sulcis subbituminous coal in a CO/water/base system[J]. Fuel, 1990,69(2):240-244. doi: 10.1016/0016-2361(90)90180-X

    10. [10]

      WANG Wei-dong, ZOU Chun-yu, ZHAO Jian-tao. Impact of high-temperature and re-heating on low-temperature pyrolysis products and coking of Yilan coal[J]. Coal Chem Ind, 2010,38(2):22-26. doi: 10.3969/j.issn.1005-9598.2010.02.005

    11. [11]

      ZHU Pei-zhi, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.

    12. [12]

      CASSIDY P J, JACKSON W R, LARKINS F P, SAKUROVS R J, SUTTON J F. Hydrogenation of brown coal:8. The effect of added promoters and water on the liquefaction of Victorian brown coal using hydrogen, carbon monoxide and synthesis gas[J]. Fuel, 1986,65(3):374-379. doi: 10.1016/0016-2361(86)90298-X

    13. [13]

      ZHAO Y Q, ZHANGM , CUI X T, DONG D L, WANG Q, ZHANG Y F. Converting lignite to caking coal via hydro-modification in a subcritical water-CO system[J]. Fuel, 2016,167:1-8. doi: 10.1016/j.fuel.2015.11.028

    14. [14]

      PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The role of catalyst impregnation and solvent type in improving liquefaction efficiencies[J]. Coal Sci Technol, 1995,24(6):1307-1310.  

    15. [15]

      JIN L J, HAN K M, WANG J Y, HU H Q. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Process Technol, 2014,128:232-237. doi: 10.1016/j.fuproc.2014.07.033

    16. [16]

      KANEKO T, SUGITA S, TAMURA M, SHIMASAKI K, MAKINO E, SILALAHI L H. Highly active limonite catalysts for direct coal liquefaction[J]. Fuel, 2002,81(11):1541-1549.  

    17. [17]

      HUANG Chuan-rong, WU Shi-yong, NIE Li, QIN Xiao-gang, WU You-qing, GAO Jin-sheng. Effects of iron-based catalysts on liquefaction of Shengli lignite[J]. J East China Univ Technol:Nat Sci Ed, 2014,40(1):21-25. doi: 10.3969/j.issn.1006-3080.2014.01.004

    18. [18]

      LI X, ZONG Z M, MA W W, CAO J P, MAYYAS M, WEI Z H, LI Y, YAN H L, WANG D, YANG R, WEI X Y. Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars[J]. Fuel Process Technol, 2015,131:39-45.  

    19. [19]

      GENG Li-li, ZHOU Qi-xiong, MA Feng-yun, LENG Shuai. Study on the distributions of the products of Nantaizi coal during catalytic hydropyrolysis[J]. Coal Convers, 2012,35(1):1-3. doi: 10.3969/j.issn.1004-4248.2012.01.001

    20. [20]

      WATANABE R, SAKAMOTO Y, YAMAMURO K, TAMURA S, KIKUCHI E, SEKINE Y. Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction[J]. Appl Catal A:Gen, 2013,457(4):1-11.  

    21. [21]

      YANG Li-jun, PAN Tie-ying, SHI Xin-mei, LIN Hua-lin, ZHANG De-xiang, GAO Jin-sheng. Characterization of coal liquefaction oil by 1H NMR and GC-MS[J]. J Instrum Anal, 2007,26(4):488-491. doi: 10.3969/j.issn.1004-4957.2007.04.008

    22. [22]

      MA W W, ZONG Z M, LI X, WEI X Y. Catalytic hydrocracking of extraction residue from Huolinguole lignite over Fe3O4/SiO2/Mg2Si magnetic solid superbase catalyst[C]. Academic Forum for Graduate Students of "Mechanical Engineering and Thermal Engineering" in Shanghai, 2014.

    23. [23]

      WU Xiu-zhang, SHI Yu-lin, XU Chun-ming. Hydro-upgrading pilot test of direct coal liquefaction effluent[J]. Acta Pet Sin:Pet Process Sect, 2009,25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004

    24. [24]

      SHAN X G, SHU G P, LI K J, ZHANG X W, WANG H X, CAO X P, JIANG H B, WEN H X. Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction[J]. Fuel, 2017,194:291-296. doi: 10.1016/j.fuel.2017.01.034

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(7)
  • Abstract views(1467)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return