Citation: Hui Chen, Qingfu Wang, Tingting Liu, Yao Zhang, Duo Zhou, Yunfei Li. Progress in Hydrogenation/Dehydrogenation Reactions Catalyzed by Non-Noble Metal Complexes of Iron, Cobalt and Manganese[J]. Chemistry, ;2021, 84(3): 232-239. shu

Progress in Hydrogenation/Dehydrogenation Reactions Catalyzed by Non-Noble Metal Complexes of Iron, Cobalt and Manganese

Figures(2)

  • Catalytic hydrogenation and dehydrogenation reactions are the core of the modern chemical industry. From the exploration of milligram-level organic chemical reactions to the production of tons of chemicals, there are wide applications of catalytic hydrogenation and dehydrogenation reactions. For a long time, precious metal catalysts have been the key to the catalytic hydrogenation and dehydrogenation of nitrogen-containing and oxygen-containing compounds. From the perspective of environmental protection and sustainable development, in recent years, non-noble metal-catalyzed hydrogenation and dehydrogenation reactions have made important research progress. This review aims to introduce the significant progress made in the development of non-noble metal-catalyzed hydrogenation and dehydrogenation conversions.
  • 加载中
    1. [1]

      Alig L, Fritz M, Schneider S. Chem. Rev., 2019, 119(4): 2681~2751. 

    2. [2]

      Gunanathan C, Milstein D. Science, 2013, 341(6143): 1229712. 

    3. [3]

      Kumar A, Bhatti T M, Goldman A S. Chem. Rev., 2017, 117(19): 12357~12384. 

    4. [4]

      Crabtree R H. Chem. Rev., 2017, 117(13): 9228~9246. 

    5. [5]

      Filonenko G A, van Putten R, Hensen E J M, et al. Chem. Soc. Rev., 2018, 47: 1459~1483. 

    6. [6]

      Sui-Seng C, Haque F N, Hadzovic A, et al. Inorg. Chem., 2009, 48(2): 735~743. 

    7. [7]

      Langer R, Leitus G, Ben-David Y, et al. Angew. Chem. Int. Ed., 2011, 50(9): 2120~2124. 

    8. [8]

      Langer R, Diskin-Posner Y, Leitus G, et al. Angew. Chem. Int. Ed., 2011, 50(42): 9948~9952 

    9. [9]

      Zirakzadeh A, Kirchner K, Roller A, et al. Organometallics, 2016, 35(21): 3781~3787. 

    10. [10]

      Smith S A M, Lagaditis P O, Lüpke A, et al. Chem. Eur. J., 2017, 23(30): 7212~7216. 

    11. [11]

      Zell T, Ben-David Y, Milstein D. Angew. Chem. Int. Ed., 2014, 53(18): 4685~4689. 

    12. [12]

      Gajewski P, Gonzalez-de-Castro A, Renom-Carrasco M, et al. ChemCatChem, 2016, 8(22): 3431~3435. 

    13. [13]

      Werkmeister S, Junge K, Wendt B, et al. Angew. Chem. Int. Ed., 2014, 53(33): 8722~8726. 

    14. [14]

      Chakraborty S, Dai H, Bhattacharya P, et al. J. Am. Chem. Soc., 2014, 136(22): 7869~7872. 

    15. [15]

      Lange S, Elangovan S, Cordes C, et al. Catal. Sci. Technol., 2016, 6: 4768~4772. 

    16. [16]

      Bornschein C, Werkmeister S, Wendt B, et al. Nat. Commun., 2014, 5: 4111. 

    17. [17]

      Chakraborty S, Leitus G, Milstein D. Chem. Commun., 2016, 52: 1812~1815. 

    18. [18]

      Chakraborty S, Milstein D. ACS Catal., 2017, 7(6): 3968~3972. 

    19. [19]

      Garg J A, Chakraborty S, Ben-David Y, et al. Chem. Commun., 2016, 52: 5285~5288. 

    20. [20]

      Schneck F, Assmann M, Balmer M, et al. Organometallics, 2016, 35(11): 1931~1943. 

    21. [21]

      Rezayee N M, Samblanet D C, Sanford M S. ACS Catal., 2016, 6(10): 6377~6383. 

    22. [22]

      Jayarathne U, Zhang Y, Hazari N, et al. Organometallics, 2017, 36(2): 409~416. 

    23. [23]

      Zhang G, Scott B L, Hanson S K. Angew. Chem. Int. Ed., 2012, 51(48): 12102~12106. 

    24. [24]

      Rösler S, Obenauf J, Kempe R. J. Am. Chem. Soc., 2015, 137(25): 7998~8001. 

    25. [25]

      Srimani D, Mukherjee A, Goldberg A F G, et al. Angew. Chem. Int. Ed., 2015, 54(42): 12357~12360. 

    26. [26]

      Yuwen J, Chakraborty S, Brennessel W W, et al. ACS Catal., 2017, 7(5): 3735~3740. 

    27. [27]

      Korstanje T J, van der Vlugt J I, Elsevier C J, et al. Science, 2015, 350(6258): 298~302. 

    28. [28]

      Mukherjee A, Srimani D, Chakraborty S, et al. J. Am. Chem. Soc., 2015, 137(28): 8888~8891. 

    29. [29]

      Adam R, Bheeter C B, Cabrero-Antonino J R, et al. ChemSusChem, 2017, 10(5): 842~846. 

    30. [30]

      Elangovan S, Topf C, Fischer S, et al. J. Am. Chem. Soc., 2016, 138(28): 8809~8814. 

    31. [31]

      Elangovan S, Garbe M, Jiao H, et al. Angew. Chem. Int. Ed., 2016, 55(49): 15364~15368. 

    32. [32]

      Widegren M B, Harkness G J, Slawin A M Z, et al. Angew. Chem. Int. Ed. 2017, 56(21): 5825~5828. 

    33. [33]

      Kallmeier F, Irrgang T, Dietel T, et al. Angew. Chem. Int. Ed., 2016, 55(39): 11806~11809. 

    34. [34]

      Garbe M, Junge K, Walker S, et al. Angew. Chem. Int. Ed., 2017, 56(37): 11237~11241. 

    35. [35]

      van Putten R, Uslamin E A, Garbe M, et al. Angew. Chem. Int. Ed., 2017, 56(26): 7531~7534. 

    36. [36]

      Espinosa-Jalapa N A, Nerush A, Shimon L J W, et al. Chem. Eur. J., 2017, 23(25): 5934~5938. 

    37. [37]

      Fu S, Shao Z, Wang Y, et al. J. Am. Chem. Soc., 2017, 139(34): 11941~11948. 

    38. [38]

      Chakraborty S, Brennessel W W, Jones W D. J. Am. Chem. Soc., 2014, 136(24): 8564~8567. 

    39. [39]

      Chakraborty S, Lagaditis P O, Förster M. ACS Catal., 2014, 4(11): 3994~4003. 

    40. [40]

      Sharninghausen L S, Mercado B Q, Crabtree R H, et al. Chem. Commun., 2015, 51: 16201~16204. 

    41. [41]

      Peña-López M, Neumann H, Beller M. ChemCatChem, 2015, 7(5): 865~871. 

    42. [42]

      Lane E M, Uttley K B, Hazari N, et al. Organometallics, 2017, 36(10): 2020~2025. 

    43. [43]

      Chakraborty S, Leitus G, Milstein D. Angew. Chem. Int. Ed., 2017, 56(8): 2074~2078. 

    44. [44]

      Mastalir M, Stöger B, Pittenauer E, et al. Adv. Synth. Catal., 2016, 358(23): 3824~3831. 

    45. [45]

      Mastalir M, Glatz M, Gorgas N, et al. Chem. Eur. J., 2016, 22(35): 12316~12320. 

    46. [46]

      Yan T, Feringa B L, Barta K. Nat. Commun., 2014, 5: 5602. 

    47. [47]

      Yan T, Feringa B L, Barta K. ACS Catal., 2016, 6(1): 381~388. 

    48. [48]

      Zhang G, Vasudevan K V, Scott B L, et al. J. Am. Chem. Soc., 2013, 135(23): 8668~8681. 

    49. [49]

      Zhang G, Hanson S K. Org. Lett., 2013, 15(3): 650~653. 

    50. [50]

      Zhang G, Yin Z, Zheng S. Org. Lett., 2016, 18(2): 300~303. 

    51. [51]

      Mastalir M, Tomsu G, Pittenauer E, et al. Org. Lett. 2016, 18(14): 3462~3465. 

    52. [52]

      Zhang G, Wu J, Zeng H, et al. Org. Lett. 2017, 19(5): 1080~1083. 

    53. [53]

      Yin Z, Zeng H, Wu J, et al. ACS Catal., 2016, 6(10): 6546~6550. 

    54. [54]

      Rösler S, Ertl M, Irrgang T, et al. Angew. Chem. Int. Ed., 2015, 54(50): 15046~15050. 

    55. [55]

      Freitag F, Irrgang T, Kempe R. Chem. Eur. J., 2017, 23(50): 12110~12113. 

    56. [56]

      Deibl N, Kempe R. J. Am. Chem. Soc., 2016, 138(34): 10786~10789. 

    57. [57]

      Elangovan S, Neumann J, Sortais J B, et al. Nat. Commun., 2016, 7: 12641. 

    58. [58]

      Peña-López M, Piehl P, Elangovan S, et al. Angew. Chem. Int. Ed., 2016, 55(48): 14967~14971. 

    59. [59]

      Mukherjee A, Nerush A, Leitus G, et al. J. Am. Chem. Soc., 2016, 138(13): 4298~4301. 

    60. [60]

      Mastalir M, Pittenauer E, Allmaier G, et al. J. Am. Chem. Soc., 2017, 139(26): 8812~8815. 

    61. [61]

      Schlagbauer M, Kallmeier F, Irrgang T, et al. Angew. Chem. Int. Ed., 2020, 59(4): 1485~1490. 

  • 加载中
    1. [1]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    9. [9]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

Metrics
  • PDF Downloads(40)
  • Abstract views(1689)
  • HTML views(401)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return