Citation: Saisai Chen, Zhi Hong, Xiaoyu Huang, Xiaoqing Lv, Zongyang Li, Xinrou Hu, Xinying Ruan, Qianyan Yu. Syntheses of Dithiocarbamates Catalyzed by KF/nano-γ-Al2O3 under Microwave Irradiation[J]. Chemistry, ;2021, 84(6): 596-603. shu

Syntheses of Dithiocarbamates Catalyzed by KF/nano-γ-Al2O3 under Microwave Irradiation

  • Corresponding author: Zhi Hong, zhihong@tzc.edu.cn
  • Received Date: 16 December 2020
    Accepted Date: 8 January 2021

Figures(5)

  • In this paper, an efficient method for the synthesis of dithiocarbamates under microwave irradiation condition with KF/nano-γ-Al2O3 catalyzed Michael addition of electron-deficient alkenes, amines and carbon disulfide in the PEG-400 solution was developed with yields of 76.5% to 91.6%. Meanwhile, the effects of the catalyst, solvent, microwave power, reaction time on the reaction were investigated, and the optimum conditions of the experiment were determined. This method has the advantages of short reaction time, high yield and environmental friendliness. In addition, KF/nano-γ-Al2O3 catalyzed one-pot synthesis of dithiocarbamates from benzaldehyde, ketones, amines and carbon disulfide in PEG-400 solution under microwave irradiation was investigated. The yields were 73.4%~82.8%.
  • 加载中
    1. [1]

      Sperling J M, Warzecha E J, Celis-Barros C, et al. Nature, 2020, 583(7816): 396~399. 

    2. [2]

      Jiang S C, Su S J, Chen M, et al. J. Agric. Food Chem., 2020, 68(20): 5641~5647. 

    3. [3]

      Stasevych M, Zvarych V, Lunin V, et al. SAR QSAR Environ. Res., 2017, 28(5): 355~366. 

    4. [4]

      Altintop M D, Sever B, Akalin C G, et al. Eur. J. Med. Chem., 2017, 125(5): 190~196.

    5. [5]

      Tangtrongsup S, Kisiday J D. Cell. Mol. Bioeng., 2019, 12(2): 153~163. 

    6. [6]

      Manar K K, Yadav C L, Tiwari N, et al. CrystEngComm, 2017(19): 2660~2672.

    7. [7]

       

    8. [8]

      Kartina D, Wahab A W, Ahmad A, et al. Sys. Rev. Pharm., 2020, 11(9): 43~51.

    9. [9]

      Asadipour A, Shams Z, Eskandari K, et al. Res. Chem. Intermed., 2017, 44(2): 1295~1340.

    10. [10]

       

    11. [11]

      Quiroga D, Becerra L D, Coy-Barrera E. ACS Omega, 2019, 4(9): 13710~13720. 

    12. [12]

      Zhou S G, Wang J H, Zhang F F, et al. Org. Lett., 2016, 18(10): 2427~2430. 

    13. [13]

      Basavaiah D, Pal S, Veeraraghavaiah G, et al. Tetrahedron, 2015, 71(28): 4659~4664. 

    14. [14]

      Guo B G, Ge Z M, Cheng T M, et al. Synth. Commun., 2001, 31(19): 3021~3025. 

    15. [15]

      Xia S, Wang X, Ge Z M, et al. Tetrahedron, 2009, 65(5): 1005~1009. 

    16. [16]

      Vargas D F, L Larghi E, Kaufman T S. Synthesis, 2019, 51(9): 2030~2038. 

    17. [17]

      Kshiar B, Shangpliang O R, Myrboh B. Synthetic Commun., 2018, 48(14): 1816~1827. 

    18. [18]

      Tang Y, Ren H M, Chang F Q, et al. RSC Adv., 2017, 7(10): 5694~5700. 

    19. [19]

      Hong Z, Li J J, Chen G, et al. RSC Adv., 2016, 6(16): 13581~13588. 

    20. [20]

      Fridkin G, Yehezkel L, Columbus I, et al. J. Org. Chem., 2016, 81(5): 2154~2158. 

    21. [21]

      Gogoi P, Konwar D. Tetrahedron Lett., 2007, 48(4): 531~533. 

    22. [22]

      Fan M M, Liao D K, Aboud M F A, et al. Angew. Chem. Int. Ed., 2020, 59(21): 8247~8254. 

    23. [23]

       

    24. [24]

      Buess C M. J. Am. Chem. Soc., 1955, 77(24): 6613~6615. 

    25. [25]

      Zhivotova T S, Gazaliev A M, Ibraev M K, et al. Russ. J. Appl. Chem., 2004, 77(8): 1321~1324. 

    26. [26]

      Schweiger K. Monatsh. Chem., 1980, 111(5): 1175~1184. 

    27. [27]

      Kreutzkamp N, Peschel H. Arch. Pharmaz., 1971, 304(7): 477~481. 

    28. [28]

      Bacharaju K, Jambula S R, Sivan S, et al. Bioorg. Med. Chem. Lett., 2012, 22(9): 3274~3277. 

    29. [29]

      Kalia S B, Puri R, Thakur A, et al. J. Therm. Anal. Calorim., 2015, 119(3): 1619~1632. 

    30. [30]

      Azizi N, Khajeh M, Hasani M, et al. Tetrahedron Lett., 2013, 54(39): 5407~5410. 

    31. [31]

      Fridkin G, Columbus I, Yehezkel L, et al. J. Org. Chem., 2018, 83(17): 10541~10545. 

    32. [32]

       

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Haotian ZhangShengfa FengMufan CaoXiong Xiong LiuPengcheng YuanYaping WangMin GaoLong PanZhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096

    5. [5]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    11. [11]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    15. [15]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    16. [16]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    17. [17]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    20. [20]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

Metrics
  • PDF Downloads(19)
  • Abstract views(3765)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return