Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass
- Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
Citation:
CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(1): 18-27.
STOCKER T F, QIN D H, PLATTNER G K, TIGNOR M M B, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013(IPCC):The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2013.
ADÁNEZ J, ABAD A, GARCÍA-LABIANO F, GAYÁN P, DE DIEGO L F. Progress in combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012,38:215-282. doi: 10.1016/j.pecs.2011.09.001
ADÁNEZ J, ABAD A, MENDIARA T, GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F. Chemical looping combustion of solid fuels[J]. Prog Energy Combust Sci, 2018,65:6-66. doi: 10.1016/j.pecs.2017.07.005
GUO Q J, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2014,53(1):78-86. doi: 10.1021/ie401568x
HE F, GALINSKY N, LI F X. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles-Feasibility assessment and process simulations[J]. Int J Hydrogen Energy, 2013,38(19):7839-7854. doi: 10.1016/j.ijhydene.2013.04.054
WANG Xu-feng, LIU Jing, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. J Fuel Chem Technol, 2019,47(3):306-311.
GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, DE DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process[J]. Fuel, 2012,96:226-238. doi: 10.1016/j.fuel.2012.01.021
CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004,83:1215-1225. doi: 10.1016/j.fuel.2003.11.013
FORUTAN H R, KARIMI E, HAFIZI A, RAHIMPOUR M R, KESHAVARZ P. Expert representation chemical looping reforming:A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3[J]. J Ind Eng Chem, 2015,21:900-911. doi: 10.1016/j.jiec.2014.04.031
ABAD A, ADÁNEZ J, GARCÍA-LABIANO F, DE DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci, 2007,62(1/2):533-549.
ZENG J M, XIAO R, ZHANG S, ZHANG H Y, ZENG D W, QIU Y, MA Z. Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor[J]. Appl Energy, 2018,229:404-412. doi: 10.1016/j.apenergy.2018.08.025
SAHA C, BHATTACHARYA S. Chemical looping combustion of low-ash and high-ash low rank coals using different metal oxides-A thermogravimetric analyser study[J]. Fuel, 2012,97:137-150. doi: 10.1016/j.fuel.2012.02.012
BAO J H, LI Z S, CAI N S. Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion[J]. Appl Energy, 2014,115:549-558. doi: 10.1016/j.apenergy.2013.10.051
GU H M, SHEN L H, ZHONG Z P, ZHOU Y F, LIU W D, NIU X, GE H J, JIANG S X, WANG L L. Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chem Eng J, 2015,277:70-78. doi: 10.1016/j.cej.2015.04.105
ILYUSHECHKIN A Y, KOCHANEK M, LIM S. Interactions between oxygen carriers used for chemical looping combustion and ash from brown coals[J]. Fuel Process Technol, 2015,147:71-82.
DAI J Z, WHITTY K. Effects of coal ash on CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Energy Fuels, 2018,32(11):11656-11665. doi: 10.1021/acs.energyfuels.8b02521
KELLER M, ARJMAND M, LEION H, MATTISSON T. Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC)[J]. Chem Eng Res Des, 2014,92(9):1753-1770. doi: 10.1016/j.cherd.2013.12.006
SAHA C, ZHANG S, HEIN K, XIAO R, BHATTACHARYA S. Chemical looping combustion (CLC) of two Victorian brown coals-Part 1:Assessment of interaction between CuO and minerals inherent in coals during single cycle experiment[J]. Fuel, 2013,104:262-274. doi: 10.1016/j.fuel.2012.08.009
SAHA C, ZHANG S, XIAO R, BHATTACHARYA S. Chemical Looping Combustion (CLC) of two Victorian brown coals-Part 2:Assessment of interaction between CuO and minerals inherent in coals during multi cycle experiments[J]. Fuel, 2012,96:335-347. doi: 10.1016/j.fuel.2012.01.048
JIANG S, SHEN L, WU J, YAN J, SONG T. The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J]. Chem Eng J, 2017,317:132-42. doi: 10.1016/j.cej.2017.01.091
JACOB K T, ALCOCK C B. Thermodynamics of CuA1O2 and CuA12O4 and phase equilibria in the system Cu2O-CuO-Al2O3[J]. J Am Ceram Soc, 1974,58(5/6):192-195.
MROVĚC M, LEITNEŘ J, NEVRIVA M, SEDMIDUBSKY D, STEJSKAL J. Thermochemical properties of MeCuO2 and Me2CuO3 (Me=Ca, Sr, Ba) mixed oxides[J]. Thermochim Acta, 1998,318(1/2):63-70.
YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.
ZHAO Y C, ZHANG J Y, TIAN C, LI H, SHAO X, ZHENG C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in china[J]. Energy Fuels, 2010,16(4):907-16.
SAN PIO M A, GALLUCCI F, ROGHAIR I, VAN SINT ANNALAND M. On the mechanism controlling the redox kinetics of Cu-based oxygen carriers[J]. Chem Eng Res Des, 2017,124:193-201. doi: 10.1016/j.cherd.2017.06.019
DAI J Z, WHITTY K J. Predicting and alleviating coal ash-induced deactivation of CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Fuel, 2019,241:1214-1222. doi: 10.1016/j.fuel.2019.02.029
DEAN J A. Lange's Handbook of Chemistry[M]. New York:McGraw-Hill, 1999.
NIU Y Q, TAN H Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003
YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017,45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003
YAN J C, GE H J, JIANG S X, GU H M, SONG T, GUO Q J, SHEN L H. Effect of sodium removal on chemical looping combustion of high-sodium coal with hematite as an oxygen carrier[J]. Energy Fuels, 2019,33(3):2153-2165. doi: 10.1021/acs.energyfuels.9b00044
NAMKUNG H, HU X F, KIM H T, WANG F C, YU G S. Evaluation of sintering behavior of ash particles from coal and rice straw using optical heating stage microscope at high temperature fouling conditions[J]. Fuel Process Technol, 2016,149:195-208. doi: 10.1016/j.fuproc.2016.04.020
SCALA F, CHIRONE R. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J]. Biomass Bioenergy, 2008,32(3):252-266.
CHIRONE R, MICCIO F, SCALA F. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chem Eng J, 2006,123(3):71-80. doi: 10.1016/j.cej.2006.07.004
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Q: SiO2; H: Fe2O3; Ca: Al2O3; C: CaCO3; Ar: MgAl2O4; Sy: KCl; S: Al2SiO5; Pe: MgO
(a): CuO+GY ash; (b): CuO+SM ash; (c): CuO+DC ash; (d): CuO+LJ ash CP: Cu2O; Q: SiO2; CS: CaSiO3; CF: Cu2Fe2O4; CO: CuO; CI: Ca2Fe9O13; CF5: Ca2FeAlO5; CA: CuAl2O4; CCS: CaCuSi2O6; CA8: CaAl2Si2O8; CC: CaCuO2; V: CuFeS2; M: Fe3O4; CF2: CuFe2O4; CM: CuMgSi2O6; He: CaFeSi2O6; D: CaMgSi2O6; DS: Ca0.8Mg1.2(SiO3)2; CA2: CaAl2O4; MC: (Mg0.03Ca0.97) ·CO3
(a): CuO +GY ash; (b): CuO +SM ash; (c): CuO+DC ash; (d): CuO +LJ ash
CO: CuO; CP: Cu2O; CI: Ca2Fe9O13; DS: Ca0.8Mg1.2(SiO3)2; D: CaMgSi2O6; MC: (Mg0.03Ca0.97)·CO3; CC: CaCuO2; CM: CuMgSi2O6; CM2: Cu2Mg5SiO22(OH)2; He: CaFeSi2O6; CCS: CaCuSi2O6
CI2: CaFe2O4; CP: Cu2O; CO: CuO; Mo: Ca(Mg0.88Fe0.12)SiO4; He: CaFeSi2O6; CC: CaCuO2; CA: CuAl2O4; CI: Ca2Fe9O13; D: CaMgSi2O6; Mo2: Ca(Mg0.93Fe0.07)SiO4; CM: CuMgSi2O6; CM2: Cu2Mg5SiO22(OH)2; CCS: CaCuSi2O6; CF: Cu2Fe2O4; CA2: CaAl2O4
(a): CuO+LJ ash after 10 cycles at 900 ℃; (b): CuO+GY ash after 10 cycles at 900 ℃; (c): CuO+SM ash after 10 cycles at 900 ℃; (d): CuO+DC ash after 10 cycles at 900 ℃