Citation: CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 18-27. shu

Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 12 August 2019
    Revised Date: 20 November 2019

    Fund Project: National Natural Science Foundation of China 41672148The project was supported by National Natural Science Foundation of China (41672148)

Figures(11)

  • The carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass were investigated experimentally by considering three factors of reaction temperature, type of ash and ash content. The chemical-looping gasification was simulated by reciprocally switching the redox atmosphere of the fixed bed and the products were characterized by XRD and SEM-EDS and analyzed by thermodynamic calculation. The results show that Fe2O3 and Al2O3 in the coal ash can easily react with CuO/Cu2O, forming complexes such as CuAl2O4, Cu2Fe2O4 and CuFe2O4, which are difficult to reduce. However, CaO can alleviate the sintering of Cu-based oxygen carriers by hindering the formation of Cu-Al and Cu-Si complexes. The increase of reaction temperature promotes the solid-solid reaction of CuO with silicate minerals such as CaSiO3 and MgSiO3, producing CaCuSi2O6 and CuMgSi2O6 and reducing the reactivity of Cu-based oxygen carriers. With the increase of ash content, Ca2Fe9O13 generated from Ca2+ and Fe3+ can react with SiO2, forming three-phase eutectic CaFeSi2O6 with a high-melting point, which co-fuses with Cu-based oxygen carrier and covers the surface of the oxygen carrier, leading to a decrease in the oxygen release performance.
  • 加载中
    1. [1]

      STOCKER T F, QIN D H, PLATTNER G K, TIGNOR M M B, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013(IPCC):The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2013.

    2. [2]

      ADÁNEZ J, ABAD A, GARCÍA-LABIANO F, GAYÁN P, DE DIEGO L F. Progress in combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012,38:215-282. doi: 10.1016/j.pecs.2011.09.001

    3. [3]

      ADÁNEZ J, ABAD A, MENDIARA T, GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F. Chemical looping combustion of solid fuels[J]. Prog Energy Combust Sci, 2018,65:6-66. doi: 10.1016/j.pecs.2017.07.005

    4. [4]

      GUO Q J, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2014,53(1):78-86. doi: 10.1021/ie401568x

    5. [5]

      HE F, GALINSKY N, LI F X. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles-Feasibility assessment and process simulations[J]. Int J Hydrogen Energy, 2013,38(19):7839-7854. doi: 10.1016/j.ijhydene.2013.04.054

    6. [6]

      WANG Xu-feng, LIU Jing, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. J Fuel Chem Technol, 2019,47(3):306-311.  

    7. [7]

      GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, DE DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process[J]. Fuel, 2012,96:226-238. doi: 10.1016/j.fuel.2012.01.021

    8. [8]

      CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004,83:1215-1225. doi: 10.1016/j.fuel.2003.11.013

    9. [9]

      FORUTAN H R, KARIMI E, HAFIZI A, RAHIMPOUR M R, KESHAVARZ P. Expert representation chemical looping reforming:A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3[J]. J Ind Eng Chem, 2015,21:900-911. doi: 10.1016/j.jiec.2014.04.031

    10. [10]

      ABAD A, ADÁNEZ J, GARCÍA-LABIANO F, DE DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci, 2007,62(1/2):533-549.  

    11. [11]

      ZENG J M, XIAO R, ZHANG S, ZHANG H Y, ZENG D W, QIU Y, MA Z. Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor[J]. Appl Energy, 2018,229:404-412. doi: 10.1016/j.apenergy.2018.08.025

    12. [12]

      SAHA C, BHATTACHARYA S. Chemical looping combustion of low-ash and high-ash low rank coals using different metal oxides-A thermogravimetric analyser study[J]. Fuel, 2012,97:137-150. doi: 10.1016/j.fuel.2012.02.012

    13. [13]

      BAO J H, LI Z S, CAI N S. Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion[J]. Appl Energy, 2014,115:549-558. doi: 10.1016/j.apenergy.2013.10.051

    14. [14]

      GU H M, SHEN L H, ZHONG Z P, ZHOU Y F, LIU W D, NIU X, GE H J, JIANG S X, WANG L L. Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chem Eng J, 2015,277:70-78. doi: 10.1016/j.cej.2015.04.105

    15. [15]

      ILYUSHECHKIN A Y, KOCHANEK M, LIM S. Interactions between oxygen carriers used for chemical looping combustion and ash from brown coals[J]. Fuel Process Technol, 2015,147:71-82.  

    16. [16]

      DAI J Z, WHITTY K. Effects of coal ash on CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Energy Fuels, 2018,32(11):11656-11665. doi: 10.1021/acs.energyfuels.8b02521

    17. [17]

      KELLER M, ARJMAND M, LEION H, MATTISSON T. Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC)[J]. Chem Eng Res Des, 2014,92(9):1753-1770. doi: 10.1016/j.cherd.2013.12.006

    18. [18]

      SAHA C, ZHANG S, HEIN K, XIAO R, BHATTACHARYA S. Chemical looping combustion (CLC) of two Victorian brown coals-Part 1:Assessment of interaction between CuO and minerals inherent in coals during single cycle experiment[J]. Fuel, 2013,104:262-274. doi: 10.1016/j.fuel.2012.08.009

    19. [19]

      SAHA C, ZHANG S, XIAO R, BHATTACHARYA S. Chemical Looping Combustion (CLC) of two Victorian brown coals-Part 2:Assessment of interaction between CuO and minerals inherent in coals during multi cycle experiments[J]. Fuel, 2012,96:335-347. doi: 10.1016/j.fuel.2012.01.048

    20. [20]

      JIANG S, SHEN L, WU J, YAN J, SONG T. The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J]. Chem Eng J, 2017,317:132-42. doi: 10.1016/j.cej.2017.01.091

    21. [21]

      JACOB K T, ALCOCK C B. Thermodynamics of CuA1O2 and CuA12O4 and phase equilibria in the system Cu2O-CuO-Al2O3[J]. J Am Ceram Soc, 1974,58(5/6):192-195.

    22. [22]

      MROVĚC M, LEITNEŘ J, NEVRIVA M, SEDMIDUBSKY D, STEJSKAL J. Thermochemical properties of MeCuO2 and Me2CuO3 (Me=Ca, Sr, Ba) mixed oxides[J]. Thermochim Acta, 1998,318(1/2):63-70.  

    23. [23]

      YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.

    24. [24]

      ZHAO Y C, ZHANG J Y, TIAN C, LI H, SHAO X, ZHENG C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in china[J]. Energy Fuels, 2010,16(4):907-16.

    25. [25]

      SAN PIO M A, GALLUCCI F, ROGHAIR I, VAN SINT ANNALAND M. On the mechanism controlling the redox kinetics of Cu-based oxygen carriers[J]. Chem Eng Res Des, 2017,124:193-201. doi: 10.1016/j.cherd.2017.06.019

    26. [26]

      DAI J Z, WHITTY K J. Predicting and alleviating coal ash-induced deactivation of CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Fuel, 2019,241:1214-1222. doi: 10.1016/j.fuel.2019.02.029

    27. [27]

      DEAN J A. Lange's Handbook of Chemistry[M]. New York:McGraw-Hill, 1999.

    28. [28]

      NIU Y Q, TAN H Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003

    29. [29]

      YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017,45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003

    30. [30]

      YAN J C, GE H J, JIANG S X, GU H M, SONG T, GUO Q J, SHEN L H. Effect of sodium removal on chemical looping combustion of high-sodium coal with hematite as an oxygen carrier[J]. Energy Fuels, 2019,33(3):2153-2165. doi: 10.1021/acs.energyfuels.9b00044

    31. [31]

      NAMKUNG H, HU X F, KIM H T, WANG F C, YU G S. Evaluation of sintering behavior of ash particles from coal and rice straw using optical heating stage microscope at high temperature fouling conditions[J]. Fuel Process Technol, 2016,149:195-208. doi: 10.1016/j.fuproc.2016.04.020

    32. [32]

      SCALA F, CHIRONE R. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J]. Biomass Bioenergy, 2008,32(3):252-266.  

    33. [33]

      CHIRONE R, MICCIO F, SCALA F. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chem Eng J, 2006,123(3):71-80. doi: 10.1016/j.cej.2006.07.004

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    11. [11]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(5)
  • Abstract views(2298)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return