Citation: Wang Ting, Cai Zhaosheng, Xu Qing. Progress in Preparation and Application of PEGylated Chitosans[J]. Chemistry, ;2020, 83(6): 536-545. shu

Progress in Preparation and Application of PEGylated Chitosans

Figures(9)

  • Polyethylene glycol (PEG) is a non-toxic, lipophilic and hydrophilic compound which characterized with high biocompatibility and non-immunogenicity. Chitosan (CTS) can be transformed into PEGylated chitosan by introducing PEG into its sugar chain. It not only maintains the natural and excellent biodegradability of chitosan, but also has better water solubility and ability to bind organic compounds. The fields concerned with the application of CTS can be expanded through PEGylated modification. On basis of the relevant research traits in the past 20 years, the preparation of PEGylated chitosans and their application in the domains of drug loading and controlled release, tissue engineering, antibacterial materials, bioactive material delivery and environmental protection are summarized, and the future development trend is prospected.
  • 加载中
    1. [1]

      Jin R, Moreira-Teixeira L P, Karperien M, et al. Biomaterials, 2009, 30(13): 2544~2551. 

    2. [2]

      Malhotra M, Tomaro-Duchesneau C, Prakash S. Biomaterials, 2013, 34(4): 1270~1280. 

    3. [3]

      Chen J, Huang L, Lai H, et al. Mol. Pharm., 2014, 11(7): 2213~2223 

    4. [4]

      Poon Y F, Cao Y, Liu Y, et al. ACS Appl. Mater. Interf., 2010, 2(7): 2012~2025. 

    5. [5]

      Casettari L, Vllasaliu D, Castagnino E, et al. Prog. Polym. Sci., 2012, 37(5): 659~685. 

    6. [6]

      Belabassi Y, Moreau J, Gheran V, et al. Biomacromolecules, 2017, 18(9): 2756~2766. 

    7. [7]

      Mao S, Shuai X, Unger F, et al. Biomaterials, 2005, 26(32): 6343~6356. 

    8. [8]

      Yang C, Gao S, Dagnæs-Hansen F, et al. ACS Appl. Mater. Interf., 2017, 9(14): 12203~12216. 

    9. [9]

      Li W, Zhan P, Clercq E D, et al. Prog. Polym. Sci., 2013, 38(3-4): 421~444. 

    10. [10]

      Waheed S, Ahmad A, Khan S M, et al. Desalination, 2014, 351: 59~69. 

    11. [11]

      Kolhe P, Kannan R M. Biomacromolecules, 2003, 4(1): 173~180. 

    12. [12]

      Mishra S K, Raveendran S, Ferreira J M F, et al. Langmuir, 2016, 32(40): 10305~10316. 

    13. [13]

      Gunbas I D, Sezer D U, Gülce-Iz S, et al. Ind. Eng. Chem. Res., 2012, 51(37): 11946~11954. 

    14. [14]

      Harris J M, Struck E C, Case M G, et al. J. Polym. Sci., 1984, 22(2): 341~352.

    15. [15]

    16. [16]

      Xie Y, Qiao H, Su Z, et al. Biomaterials, 2014, 35(27): 7978~7991. 

    17. [17]

      Shutava T G, Livanovich K S, Pankov V V. Colloid. Surf. A, 2018, 539: 69~79. 

    18. [18]

      Ma G, Zhang X, Han J, et al. Int. J. Biol. Macromol., 2009, 45(5): 499~503. 

    19. [19]

      Zhang X, Yang D, Nie J. Int. J. Biol. Macromol., 2008, 43(5): 456~462. 

    20. [20]

      El-Sherbiny I M, Smyth H D C. Carbohyd. Res., 2010, 345(14): 2004~2012. 

    21. [21]

      Bozuyuk U, Dogan N O, Kizilel S. ACS Appl. Mater. Interf., 2018, 10(40): 33945~33955. 

    22. [22]

      Hu Y, Jiang H, Xu C, et al. Carbohyd. Polym., 2005, 61(4): 472~479. 

    23. [23]

      Gorochovceva N, Makuška R. Eur. Polym. J., 2004, 40(4): 685~691. 

    24. [24]

    25. [25]

      Yoksan R, Matsusaki M, Akashi M, et al. Colloid Polym. Sci., 2004, 282(4): 337~342. 

    26. [26]

      Fangkangwanwong J, Akashi M, Kida T, et al. Biopolymers, 2010, 82(6): 580~586.

    27. [27]

      Poon Y F, Cao Y, Liu Y, et al. ACS Appl. Mater. Interf., 2010, 2(7): 2012~2025. 

    28. [28]

      Kiuchi H, Kai W, Inoue Y. J. Appl. Polym. Sci., 2008, 107(6): 3823~3830. 

    29. [29]

      Tanuma H, Saito T, Nishikawa K, et al. Carbohyd. Polym., 2010, 80(1): 260~265. 

    30. [30]

      Kulkarni A R, Hukkeri V I, Sung H W, et al. Macromol. Biosci., 2005, 5(10): 925~928. 

    31. [31]

      Yang X, Zhang Q, Wang Y, et al. Colloid. Surf. B, 2008, 61(2): 125~131. 

    32. [32]

      Pozzo A D, Vanini L, Fagnoni M, et al. Carbohyd. Polym., 2000, 42(2): 201~206. 

    33. [33]

      Dodi G, Hritcu D, Lisa G, et al. Chem. Eng. J., 2012, 203: 130~141. 

    34. [34]

      Hsiao M, Mu Q X, Stephen Z R, et al. ACS Macro Lett., 2015, 4(4), 403~407.

    35. [35]

    36. [36]

    37. [37]

    38. [38]

      Ganguly K, Aminabhavi T M, Kulkarni A R. Ind. Eng. Chem. Res., 2011, 50(21): 11797~11807. 

    39. [39]

    40. [40]

      Liu N, Chen J, Zhang J, et al. Int. J. Biol. Macromol., 2018, 117: 553~558. 

    41. [41]

      Ma G, Yang D, Li Q, et al. Carbohyd. Polym., 2010, 79(3): 620~627. 

    42. [42]

    43. [43]

    44. [44]

      Doulabi A H, Mirzadeh H, Imani M, et al. Carbohyd. Polym., 2013, 92(1): 48~56. 

    45. [45]

      Shariatinia Z. Adv. Colloid Interf. Sci., 2019, 263: 131~194. 

    46. [46]

    47. [47]

      F Zhou, X Jia, Q Yang, et al. Biomater. Sci., 2016, 4(5): 849~856. 

    48. [48]

      Park I K, Kim T H, Park Y H, et al. J. Control. Rel., 2001, 76(3): 349~362. 

    49. [49]

    50. [50]

      Rahmi, Lelifajri, Nurfatimah R. Carbohyd. Polym., 2018, 199: 499~505. 

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    7. [7]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    11. [11]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    12. [12]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    15. [15]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    16. [16]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(66)
  • Abstract views(4680)
  • HTML views(1777)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return