Citation: HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu, MENG Xin-xin, ZHAO Zheng-quan, AO Guang-yu. Effect of phosphorus loadings on the performance of Co-Mo/γ-Al2O3 in hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 745-753. shu

Effect of phosphorus loadings on the performance of Co-Mo/γ-Al2O3 in hydrodesulfurization of coal tar

  • Corresponding author: ZHAO Liang-fu, lfzhao@sxicc.ac.cn
  • Received Date: 16 December 2015
    Revised Date: 22 January 2016

Figures(7)

  • With the fixed loadings of molybdenum oxide of 13.50% and cobalt oxide of 2.11%, respectively, the Co-Mo/γ-Al2O3 catalysts were modified by adding different mass concentration of phosphoric acid via separate-step impregnation method. The effect of different phosphorus loadings of catalysts on the hydrodesulfurization performance was studied using middle temperature coal tar from Chifeng, Inner Mongolia. The structural properties of catalysts were characterized by the temperature programmed desorption of NH3 (NH3-TPD), XRD, XPS and other methods. The results show that a proper loading of phosphorus can weaken the interaction between the support and the active components, improve the dispersion of active compents on the surface of support, and promote the reduction and sulfuration of the active components and the distribution of acid, which can improve the hydrodesulfurization performance of the catalysts. The catalyst prepared with the phosphoric acid of 4% concentration exhibits the highest hydrodesulfurization activity with the sulfur removal of 96.98%. The effect of mass concentration of phosphoric acid on the hydrodesulfurization activety of the prepared catalysts is in the order of 4% >2% >6% >1% >0 >8%.
  • 加载中
    1. [1]

      WARD J W. Hydrocracking processes and catalysts[J]. Fuel Process Technol, 1993,35(1):55-85.  

    2. [2]

      WARD J W. Design and preparation of hydrocracking catalysts[J]. Stud Surf Sci Catal, 1983(16):587-618.

    3. [3]

      ZHANG Shi-wan, XU Dong-sheng, ZHOU Xia-ping, YIN Si-cong, ZHANG Pei-xiang. Study on reaction of coal tar hydrocracking and its catalysts[J]. Mod Chem Ind, 2011,31(11):73-77.  

    4. [4]

      SUN Xiao-yan. Research on the coal tar decontamination and reactions of coal tar hydrogenation. Qingdao:Qingdao University of Science & Technology, 2012.

    5. [5]

      LEI Zhen, HU Dong-ni, PAN Hai-tao, LU Jiang-yin. Research progress of coal tar catalytic hydrogenation[J]. Mod Chem Ind, 2014,34(1):30-35.  

    6. [6]

      TIAN Meng, ZHOU Hou-feng, ZHANG Qian-he. Research progress in desulfurization and denitrification catalysts for coal tar hydrogenation[J]. Ind Catal, 2014,22(4):253-258.  

    7. [7]

      ZHANG Deng-qian, DUAN Ai-jun, ZHAO Zhen, JIANG Gui-yuan, WAN Guo-fu, HUANG Wei-qiang. Research advance in catalysts and reaction mechanism for hydrodenitrogenation[J]. Mod Chem Ind, 2007,27(1):54-59.  

    8. [8]

      WALENDZIEWSKI J. Properties and hydrodesulfurization activity of cobalt molybdenum phosphorus alumina catalysts[J]. React Kinet Chem Lett, 1991,43:107-113. doi: 10.1007/BF02075420

    9. [9]

      IWAMOTO R, GRIMBLOT J. Genesis structural and catalytic properties of Ni-Mo-P/alumina based hydrotreating catalysts prepared by a solgel method[J]. Stud Surf Sci Catal, 1999,127:169-176. doi: 10.1016/S0167-2991(99)80406-6

    10. [10]

      CAO Guang-wei, LUO Xi-hui, LIU Zhen-hua, HE Jin-mei. Preparation and characterization of hydrotreating catalysts I:Preparation of MoNiP/Al2O3 and effect of promoters[J]. Chin J Catal, 2001,22(2):143-147.  

    11. [11]

      SAJKOWSKI D J, MILLER J T, ZAJAC G W. Phosphorus promotion of Mo/Al2O3 hydrotreating catalysts[J]. Appl Catal, 1990,6:205-220.  

    12. [12]

      HU Da-wei, YANG Qing-he, SUN Shu-ling, NIU Chuan-feng. Effect of phosphorrus on the performance and active component structure of MoCoNi/Al2O3 catalyst[J]. Pet Process Petrochem, 2011,42(5):63-73.  

    13. [13]

      USMAN , YAMAMOTO T, KUBOTA T, OKAMATO Y. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J]. Appl Catal A:Gen, 2007,326(2):219-225. doi: 10.1016/j.apcata.2007.04.014

    14. [14]

      ZHOU Hui-bo, ZHANG Shun-hua, HOU Kai-hu. Effect of P and NTA on the catalytic performance of Co-Mo selective hydrodesulfurization catalyst[J]. Pet Process Petrochem, 2010,41(1):40-43.  

    15. [15]

      TANG Li, SUN Xue-qin, LIU Cong-hua, DING Wei, HUANG Xiao-liang, GAO Xiong-hou. Effects of phosphorus modification on acid and catalytic activity of Al2O3[J]. Appl Chem Ind, 2012,41(10):1785-1787.  

    16. [16]

      SHI Lei, ZHANG Zeng-hui, QIU Ze-gang, GUO Fang, ZHANG Wei, ZHAO Liang-fu. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar[J]. J Fuel Chem and Technol, 2015,43(1):75-80.  

    17. [17]

      GUO Rong, SHEN Ben-xian, FANG Xiang-chen, LING Hao. Effect of support pore structure on hydrodesulfurization performance of catalyst[J]. Acta Pet Sin, 2012,28(5):725-729.  

    18. [18]

      LEWANDOWSKI M, SARBAK Z. The effect of boron addition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts[J]. Fuel, 2000,79(5):487-495. doi: 10.1016/S0016-2361(99)00151-9

    19. [19]

      YANG Xi-yao. The study methods of solid catalysts[J]. Petrochem Technol, 2002,31(1):63-73.  

    20. [20]

      BENLEOU P, DELMON B. Modified aluminas:Relationship between activity in 1-butanol dehydration and acidity measured by NH3-TPD[J]. Catal Today, 1989,5:121-137. doi: 10.1016/0920-5861(89)80020-3

    21. [21]

      ZHOU Tong-na, YIN Hai-liang, LIU Yun-qi, HAN Shu-na, CHAI Yong-ming, LIU Chen-guang. Effect of phosphorus content on the active phase struture of NiMo/Al2O3 catalyst[J]. J Fuel Chem Technol, 2010,38(1):69-74. doi: 10.1016/S1872-5813(10)60020-5 

    22. [22]

      RAMIREZ J, CONTRERAS R, CASTILLO P. Characterization and catalytic activity of Co-Mo HDS catalysts supported on alumina-MCM-41[J]. Appl Catal A:Gen, 2000,197(1):69-78. doi: 10.1016/S0926-860X(99)00534-7

    23. [23]

      BRITO J L, LAINE J. Reducibility of Ni-Mo/Al2O3 catalysts:A TPR study[J]. J Catal, 1993,139(2):540-550. doi: 10.1006/jcat.1993.1047

    24. [24]

      HOU Xiang-lin. The Technology of Chinses Oil Refining[M]. Beijing:Petrochemical Press, 2011.

    25. [25]

      LI Tong, DONG Qun, FENG Xi-tong. Research progress in the hydrogenation catalyst presulfurization[J]. Chem Eng, 2014(1):42-44.  

    26. [26]

      CHEN W, MAVGE F, VAN GESTEL J, NIE H, LI D, LONG X. Effect of modification of the alumina cidity on the properties of supported Mo and CoMo sulfide catalysts[J]. J Catal, 2013,304:47-62. doi: 10.1016/j.jcat.2013.03.004

    27. [27]

      QIHE Ri-ma, YUAN Hui, ZHANG Yun-hong, LI Hui-feng, XIU Guang-tong. In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline[J]. Spectrosc Spect Anal, 2011,31(7):1752-1757.  

    28. [28]

      SUN Shu-ling, SHI Ya-hua, XIU Guang-tong, WANG Jin-ye. Characterization of Co-Mo hydrodesulfurization catalyst by TEM[J]. Pet Process Petrochem, 2006,37(11):2-6.  

    29. [29]

      LI M, LI H, JIANG F, CHU Y, NIE H. The relation between morphology of (Co) MoS2 phase and selective hydrodesulfurization for CoMo catalysts[J]. Catal Today, 2010,149:35-39. doi: 10.1016/j.cattod.2009.03.017

    30. [30]

      QV Ming-da, E Zhong-ming. Coal tar oil hydrogenation[J]. Chem Techno-Econo, 2005,23(6):49-51.  

    31. [31]

      ZHANG Shi-wan. Study on light-end products of coal tar with catalytic hydrogenation and catalyst. Nanchang:East China University of Technology, 2011.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(2049)
  • HTML views(1098)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return