Citation: Li Tiemei, Song Yuefei, Fan Jing. Progress in Stir Bar Sorptive Extraction Coatings[J]. Chemistry, ;2018, 81(1): 12-20. shu

Progress in Stir Bar Sorptive Extraction Coatings

  • Corresponding author: Fan Jing, fanjing@htu.cn
  • Received Date: 9 May 2017
    Accepted Date: 31 October 2017

Figures(4)

  • Introduced in 1999 as a solventless sample preparation method, stir bar sorptive extraction (SBSE) has been widely applied to the trace enrichment of various target analytes in environmental, food and biological samples, due to its advantages including large volume of the stationary phase, high pre-concentration capacity, no additional stirring, avoiding competitive adsorption, allowing sample extraction and preconcentration to be done in a single step at the same time of self-stirring and so on. Coating is the core of SBSE technique, which determines the selectivity and extraction capacity of analysis. In this review, a brief introduction of extraction principle, extraction/desorption mode and their influencing factors of the stir bar sorptive coatings are given out firstly, and then the preparation techniques and methods of SBSE coatings are focused on. Finally, the advantages and disadvantages of SBSE coatings are discussed and future development trends of SBSE coatings is prospected.
  • 加载中
    1. [1]

      C L Arthur, J Pawliszyn. Anal. Chem., 1990, 62(19):2145~2148. 

    2. [2]

      D Wang, Z M Zhang, L Luo et al. Nanotechnology, 2009, 20(46):465702. 

    3. [3]

      T M Li, Z A Lin, L Zhang et al. Analyst, 2010, 135(10):2694~2699. 

    4. [4]

      A Prieto, O Basauri, R Rodil et al. J. Chromatogr. A, 2010, 1217(16):2642~2666. 

    5. [5]

      F David, P Sandra. J. Chromatogr. A, 2007, 1152(1-2):54~69. 

    6. [6]

      M He, B Chen, B Hu. Anal. Bioanal. Chem., 2014, 406(8):2001~2026. 

    7. [7]

      F J Camino-Sánchez, R Rodríguez-Gómez, A Zafra-Gómez et al. Talanta, 2014, 130:388~399. 

    8. [8]

      F Camino-Sánchez, R Rodríguez-Gómez, A Zafra-Gómez et al. Talanta, 2014, 130:388~399. 

    9. [9]

      X Pang, A C Lewis, M D Shaw. J. Sep. Sci., 2017, 40(3):753~766. 

    10. [10]

      J Li, Y B Wang, Q Su et al. J. Sep. Sci., 2017, 40(4):893~900. 

    11. [11]

      X Qiu, Y Wu, D Chen et al. J. Nanosci. Nanotech., 2016, 16(12):12374~12381. 

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      F David, P Sandra. J. Chromatogr. A, 2007, 1152(1):54~69. 

    17. [17]

      F Sánchez-Rojas, C Bosch-Ojeda, J M Cano-Pavón. Chromatographia, 2009, 69(1):79~94. 

    18. [18]

      M Kawaguchi, A Takatsu, R Ito et al. TrAC-Trends Anal. Chem., 2013, 45:280~293. 

    19. [19]

      M Kawaguchi, R Ito, K Saito et al. J. Pharm. Biomed. Anal., 2006, 40(3):500~508. 

    20. [20]

      A Prieto, O Basauri, R Rodil et al. J. Chromatogr. A 2010, 1217(16):2642~2666. 

    21. [21]

      E Baltussen, P Sandra, F David et al. J. Microcolumn Sep., 1999, 11(10):737~747. 

    22. [22]

      P Popp, C Bauer, L Wennrich. Anal. Chim. Acta, 2001, 436(1):1~9. 

    23. [23]

      P Popp, C Bauer, B Hauser et al. J. Sep. Sci., 2003, 26(9-10):961~967. 

    24. [24]

      C Blasco, M Fernández, Y Picó et al. J. Chromatogr. A, 2004, 1030(1):77~85. 

    25. [25]

      J Ai. Anal. Chem., 1997, 69(6):1230~1236. 

    26. [26]

      C Bicchi, C Cordero, C Iori et al. J. High Resolut. Chromatogr., 2000, 23(9):539~546. 

    27. [27]

      B Tienpont, F David, K Desmet et al. Anal. Bioanal.Chem., 2002, 373(1-2):46~55. 

    28. [28]

      M Burleigh, S Dai, C Barnes et al. Sep. Sci. Technol., 2001, 36(15):3395~3409. 

    29. [29]

      J P Lambert, W M Mullett, E Kwong et al. J. Chromatogr. A, 2005, 1075(1-2):43~49. 

    30. [30]

      C Yu, B Hu. Talanta, 2012, 90:77~84. 

    31. [31]

      C Hu, M He, B Chen et al. J. Chromatogr. A, 2015, 1394:36~45. 

    32. [32]

      X Zhou, X Li, Z Zeng. J. Chromatogr. A, 2006, 1104(1-2):359~365. 

    33. [33]

      H Zhang, H K Lee. J. Chromatogr. A, 2011, 1218(28):4509~4516. 

    34. [34]

      J Yu, C Wu, J Xing. J. Chromatogr. A, 2004, 1036(2):101~111. 

    35. [35]

      W M Liu, Y Hu, J H Zhao et al. J. Chromatogr. A, 2005, 1095(1-2):1~7. 

    36. [36]

      W Liu, H Wang, Y Guan. J. Chromatogr. A, 2004, 1045(1-2):15~22. 

    37. [37]

      W A W Ibrahim, W N W Ismail, A S A Keyon et al. J. Sol-Gel Sci. Technol., 2011, 58(3):602~611. 

    38. [38]

      Y Hu, Y Zheng, F Zhu et al. J. Chromatogr. A, 2007, 1148(1):16~22. 

    39. [39]

      S V Duy, P Fayad, B Barbeau et al. Talanta, 2012, 101:337~345. 

    40. [40]

      C Yu, B Hu. J. Sep. Sci., 2009, 32(1):147~153. 

    41. [41]

      C Yu, B Hu. J. Chromatogr. A, 2007, 1160(1):71~80.

    42. [42]

      C Yu, X Li, B Hu. J. Chromatogr. A, 2008, 1202(1):102~106. 

    43. [43]

      C Yu, Z Yao, B Hu. Anal. Chim. Acta, 2009, 641(1):75~82.

    44. [44]

      X Mao, B Hu, M He et al. J. Chromatogr. A, 2012, 1256:32~39. 

    45. [45]

      L Lan, B Hu, C Yu. J. Chromatogr. A, 2010, 1217(45):7003~7009. 

    46. [46]

      C Hu, M He, B Chen et al. J. Chromatogr. A, 2013, 1275:25~31. 

    47. [47]

      W Fan, X Mao, M He et al. Anal. Bioanal. Chem., 2014, 406(28):7261~7273. 

    48. [48]

      Y Lei, M He, B Chen et al. Talanta, 2016, 150:310~318. 

    49. [49]

      Z Xiao, M He, B Chen et al. Talanta, 2016, 156-157:126~133.

    50. [50]

      S H Hashemi, M Kaykhaii, M Khajeh. Anal. Lett., 2015, 48(12):1815~1829. 

    51. [51]

      X Zhu, J Cai, J Yang et al. J. Chromatogr. A, 2006, 1131(1):37~44. 

    52. [52]

      X Zhu, Q Zhu. J. Appl. Polym. Sci., 2008, 109(4):2665~2670. 

    53. [53]

      Z Xu, Y Hu, Y Hu et al. J. Chromatogr. A, 2010, 1217(22):3612~3618. 

    54. [54]

      Y Hu, J Li, Y Hu et al. Talanta, 2010, 82(2):464~470. 

    55. [55]

      L Yang, X Zhao, J Zhou. Anal. Chim. Acta, 2010, 670(1):72~77.

    56. [56]

       

    57. [57]

      F Canale, C Cordero, C Baggiani et al. J. Sep. Sci., 2010, 33(11):1644~1651. 

    58. [58]

      N Sheng, F Wei, W Zhan et al. J. Sep. Sci., 2012, 35(5-6):707~712. 

    59. [59]

      W Zhan, F Wei, G Xu et al. J. Sep. Sci., 2012, 35(8):1036~1043. 

    60. [60]

      E Turiel, A Martín-Esteban. J. Sep. Sci., 2012, 35(21):2962~2969. 

    61. [61]

      W Fan, M Gao, M He et al. Analyst, 2015, 140(12):4057~4067. 

    62. [62]

      S H Hashemi, M Kaykhaii, F Tabehzar. J. Iran. Chem. Soc., 2016, 13(4):733~741. 

    63. [63]

      C Chen, L Yang, J Zhou. J. Appl. Polym. Sci., 2011, 122(2):1198~1205. 

    64. [64]

      A Gomez-Caballero, A Guerreiro, K Karim et al. Biosens. Bioelectron., 2011, 28(1):25~32. 

    65. [65]

      S Wang, J Wei, T Hao et al. J. Electroanal. Chem., 2012, 664:146~151. 

    66. [66]

      Q Zhu, C Ma, H Chen et al. Microchim. Acta, 2014, 181(3-4):303~311. 

    67. [67]

      X Li, X Mei, L Xu et al. J. Colloid Interf. Sci., 2016, 468:183~191. 

    68. [68]

      W Fan, M He, L You et al. J. Chromatogr. A, 2016, 1443:1~9. 

    69. [69]

      N Zhang, B Hu. Anal. Chim. Acta, 2012, 723:54~60. 

    70. [70]

      E Kazemi, S Dadfarnia, A M H Shabani. J. Iran. Chem. Soc., 2015, 12(6):929~936. 

    71. [71]

      F Kilar, S Hjerten. J. Chromatogr., 1989, 480:351~357. 

    72. [72]

      P Sadílek, D Satinsky, M Otapka et al. Curr. Anal. Chem., 2009, 5(4):311~315. 

    73. [73]

      L Kortz, C Helmschrodt, U Ceglarek. Anal. Bioanal. Chem., 2011, 399(8):2635~2644. 

    74. [74]

      L Bai, H Liu, Y Liu et al. J. Chromatogr. A, 2011, 1218(1):100~106. 

    75. [75]

      F Zheng, B Hu. J. Anal. Atom. Spectrom., 2009, 24(8):1051~1061. 

    76. [76]

      V Domingues, M Cabral, A Alves et al. Anal. Lett., 2009, 42(4):706~726. 

    77. [77]

      X Huang, D Yuan. J. Chromatogr. A 2007, 1154(1):152~157.

    78. [78]

      X Huang, D Yuan, B Huang. Talanta, 2008, 75(1):172~177.

    79. [79]

      X Huang, J Lin, D Yuan et al. J. Chromatogr. A, 2009, 1216(16):3508~3511. 

    80. [80]

      X Huang, N Qiu, D Yuan. J. Chromatogr. A, 2008, 1194(1):134~138. 

    81. [81]

      X Huang, N Qiu, D Yuan et al. Talanta, 2009, 78(1):101~106. 

    82. [82]

      X Huang, N Qiu, D Yuan. J. Sep. Sci., 2009, 32(9):1407~1414. 

    83. [83]

      X Huang, N Qiu, D Yuan et al. J. Chromatogr. A, 2009, 1216(20):4354~4360. 

    84. [84]

      X Huang, N Qiu, D Yuan. J. Chromatogr. A, 2009, 1216(46):8240~8245. 

    85. [85]

      X Huang, J Lin, D Yuan. J. Chromatogr. A, 2010, 1217(30):4898~4903. 

    86. [86]

      X Huang, N Qiu, D Yuan et al. J. Chromatogr. A, 2010, 1217(16):2667~2673. 

    87. [87]

      X Huang, J Lin, D Yuan. J. Sep. Sci., 2011, 34(16-17):2138~2144. 

    88. [88]

      X Huang, L Chen, D Yuan et al. J. Sep. Sci., 2011, 34(23):3418~3425. 

    89. [89]

      X Huang, J Lin, D Yuan. Analyst, 2011, 136(20):4289~4294. 

    90. [90]

      D Bratkowska, R Marcé, P Cormack et al. Anal. Chim. Acta, 2011, 706(1):135~142. 

    91. [91]

      D Bratkowska, N Fontanals, P Cormack et al. J. Chromatogr. A, 2012, 1225, 1~7.

    92. [92]

      Y B Luo, Q Ma, Y Q Feng. J. Chromatogr. A, 2010, 1217(22):3583~3589. 

    93. [93]

      S Wang, S Wang. J. AOAC Int., 2016, 99(1):279~286. 

    94. [94]

      M Díaz-Álvarez, E Turiel, A Martín-Esteban. J. Chromatogr. A, 2016, 1469:1~7. 

    95. [95]

      K Farhadi, M Firuzi, M Hatami. Microchim. Acta, 2015, 182(1-2):323~330. 

    96. [96]

      A Mollahosseini, M Rokue, M M Mojtahedi et al. Microchem. J., 2016, 126:431~437. 

    97. [97]

      H Liu, L Qiao, N Gan et al. J. Chromatogr. B, 2016, 1027:50~56. 

    98. [98]

      W Guan, Y Wang, F Xu et al. J. Chromatogr. A, 2008, 1177(1):28~35. 

    99. [99]

      J L Benedé, A Chisvert, D L Giokas et al. Anal. Chim. Acta, 2016, 926:63~71. 

    100. [100]

      J Feng, M Sun, Y Bu et al. J. Sep. Sci., 2016, 39(5):918~922.. 

    101. [101]

      J Li, H Y Qi, Y B Wang et al. J. Chromatogr. A, 2016, 1474:32~39. 

    102. [102]

      X Mao, M He, B Chen et al. J. Chromatogr. A, 2016, 1472:27~34. 

    103. [103]

      N Gilart, R M Marce, F Borrull et al. TrAC-Trends Anal. Chem., 2014, 54:11~23. 

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    6. [6]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    7. [7]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    10. [10]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

Metrics
  • PDF Downloads(11)
  • Abstract views(2743)
  • HTML views(513)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return