Citation: LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1409-1416. shu

Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex

  • Corresponding author: HU Hao-quan, hhu@dlut.edu.cn
  • Received Date: 14 May 2019
    Revised Date: 17 October 2019

    Fund Project: the National Natural Science Foundation of China 21776039the Fundamental Research Funds for the Central Universities DUT2018TB0The project was supported by the National Natural Science Foundation of China (21776039), National Natural Science Foundation for Young Scientist of China (51306028) and the Fundamental Research Funds for the Central Universities (DUT2018TB0)National Natural Science Foundation for Young Scientist of China 51306028

Figures(9)

  • The Fe/Al-SiO2 composite metal oxides were prepared by various methods to simulate the composition of red mud. A series of experiments were carried out to study the mercury removal performance from simulated flue gas. The results show that the composite metal oxide obtained by sol-gel method has an excellent mercury removal performance in a temperature range of 300-450 ℃. Among them, average mercury removal efficiency can reach 94.8% within 3 h at 350 ℃. Fe2O3 provides lattice oxygen and chemical adsorbed oxygen for the oxidation of Hg0, and SiO2 is conducive to the dispersion of the active component Fe2O3, which enhances the contact between Hg0 and the active sites. In the presence of trace HCl and NO in flue gas, the removal efficiency of Hg0 is close to 100%. However, the average mercury removal efficiency reduces to 90.7% and 53.4% respectively after adding 0.2 mL/min and 0.4 mL/min SO2, since the reaction of SO2 and Fe2O3 produces Fe2(SO4)3, leading to the deactivation of Fe2O3.
  • 加载中
    1. [1]

      UNEP. Global Mercury Assessment 2018 Review Draft: Sources, Emissions, Releases and Environmental Transport. Geneva: UNEP Chemicals Branch. 2018.

    2. [2]

      DB14/T1703, Standard emissions of atmospheric pollutants for coal-fired power plants[S].

    3. [3]

      YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:78-82. doi: 10.1016/j.catcom.2014.09.049

    4. [4]

      HSU C J, CHIOU H J, CHEN Y H, LIN K S, ROOD M J, HIS H C. Mercury adsorption and re-emission inhibition from actual WFGD wastewater using sulfur-containing activated carbon[J]. Environ Res, 2019,168:319-328. doi: 10.1016/j.envres.2018.10.017

    5. [5]

      GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000,39(4):1020-1029. doi: 10.1021/ie990758v

    6. [6]

      ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust, 2019,73:26-64. doi: 10.1016/j.pecs.2019.02.001

    7. [7]

      WANG P Y, SU S, XIANG J, CAO F, SUN L S, HU S, LEI S Y. Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst[J]. Chem Eng J, 2013,225:68-75. doi: 10.1016/j.cej.2013.03.060

    8. [8]

      HAO Kai-hui. Removal of elemental mercury from flue gas over modified red mud based sorbents[D]. Dalian: Dalian University of Technology, 2017. 

    9. [9]

      CAO S T, MA H J, ZHANG Y, CHEN X F, ZHANG Y F. The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions[J]. Hydrometallurgy, 2013,140:111-119. doi: 10.1016/j.hydromet.2013.09.009

    10. [10]

      KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resour Conserv Recycl, 2019,141:483-498. doi: 10.1016/j.resconrec.2018.11.006

    11. [11]

      WANG X P, SUN T C, WU S C, CHEN C, KOU J, XU C Y. A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel[J]. J Cleaner Prod, 2019,216:33-41. doi: 10.1016/j.jclepro.2019.01.176

    12. [12]

      SKODRAS G, DIAMANTOPOULOU I, SAKELLAROPOULOS G P. Role of activated carbon structural properties and surface chemistry in mercury adsorption[J]. Desalination, 2007,210(1/3):281-286.  

    13. [13]

      KONG F H, QIU J R, LIU H, ZHAO R, AI Z H. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. J Environ Sci (China), 2011,23(4):699-704. doi: 10.1016/S1001-0742(10)60438-X

    14. [14]

      ZHANG A C, ZHANG Z H, SHI J M, CHEN G Y, ZHOU C S, SUN L S. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. J Fuel Chem Technol, 2015,43(10):1258-1266. doi: 10.1016/S1872-5813(15)30038-4

    15. [15]

      LIAO Y, XIONG S C, DANG H, XIAO X, YANG S J, WONG P K. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel[J]. J Hazard Mater, 2015,299:740-746. doi: 10.1016/j.jhazmat.2015.07.083

    16. [16]

      LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens:Role of HCl and HBr[J]. Fuel, 2016,173:209-216. doi: 10.1016/j.fuel.2016.01.054

    17. [17]

      KO K B, BYAN Y C, CHO M Y, NAMKUNG W, SHIN D N, KOH D J, KIM K T. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process[J]. Chemosphere, 2008,71(9):1674-1682. doi: 10.1016/j.chemosphere.2008.01.015

    18. [18]

      ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014,236:29-38. doi: 10.1016/j.cej.2013.09.060

    19. [19]

      LIU W, XU H M, LIAO Y, QUAN Z W, LI S C, ZHAO S J, QU Z, YAN N Q. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019,235:847-854. doi: 10.1016/j.fuel.2018.08.062

    20. [20]

      GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008,73(3/4):359-370.  

    21. [21]

      DONG Y, REN X Y, QU R Y, LIU S J, ZHENG C H, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. Mol Catal, 2019,462:10-18. doi: 10.1016/j.mcat.2018.10.007

    22. [22]

      XIANG J, WANG P Y, SU S, ZHANG L Q, CAO F, SUN Z J, XIAO X, SUN L S, H U S. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler[J]. Fuel Process Technol, 2015,135:168-173. doi: 10.1016/j.fuproc.2014.12.044

    23. [23]

      LIU J, GUO R T, GUAN Z Z, SUN X, PAN W G, LIU X Y, WANG Z Y, SHI X, QIN H, QIU Z Z, LIU S W. Simultaneous removal of NO and Hg0 over Nb-modified MnTiOx catalyst[J]. Int J Hydrogen Energy, 2019,44(2):835-843. doi: 10.1016/j.ijhydene.2018.11.006

    24. [24]

      KIM S C, NAHM S W, PARK Y K. Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds[J]. J Hazard Mater, 2015,300:104-113. doi: 10.1016/j.jhazmat.2015.06.059

    25. [25]

      HE C, SHEN B X, LI F K. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016,304:10-17. doi: 10.1016/j.jhazmat.2015.10.044

    26. [26]

      LI G L, SHEN B X, LI Y W, ZHAO B, WANG F M, HE C, WANG Y Y, ZHANG M. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. J Hazard Mater, 2015,298:162-169. doi: 10.1016/j.jhazmat.2015.05.031

    27. [27]

      CHEN Y, GUO X, WU F, HUANG Y, YIN Z C. Mechanisms of mercury transformation over α-Fe2O3 (001) in the presence of HCl and/or H2S[J]. Fuel, 2018,233:309-316. doi: 10.1016/j.fuel.2018.06.065

    28. [28]

      JIANG S J, LIU X, LI H L, WANG J, YANG Z Q, PENG H Y, SHI K M. Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst[J]. Fuel, 2018,215:232-238. doi: 10.1016/j.fuel.2017.11.015

    29. [29]

      ZHENG J M, SHAH K J, ZHOU J S, PAN S Y, CHIANG P C. Impact of HCl and O2 on removal of elemental mercury by heat-treated activated carbon:Integrated X-ray analysis[J]. Fuel Process Technol, 2017,167:11-17. doi: 10.1016/j.fuproc.2017.06.017

    30. [30]

      YANG Y J, LIU J, WANG Z, LIU F. Heterogeneous reaction kinetics of mercury oxidation by HCl over Fe2O3 surface[J]. Fuel Process Technol, 2017,159:266-271. doi: 10.1016/j.fuproc.2017.01.035

  • 加载中
    1. [1]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    2. [2]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

    14. [14]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(3)
  • Abstract views(1053)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return