Citation: YANG Wen-shen, LANG Lin, YIN Xiu-li, WU Chuang-zhi. Preparation and H2S/CH4 separation performance of MFI type zeolite membrane[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 891-896. shu

Preparation and H2S/CH4 separation performance of MFI type zeolite membrane

  • Corresponding author: YIN Xiu-li, xlyin@ms.giec.ac.cn
  • Received Date: 23 January 2018
    Revised Date: 1 May 2018

    Fund Project: The project was supported by the National Key R & D Program of China (2016YFE0203300), the Guangdong Natural Science Foundation (2017B030308002) and Science and Technology Program of Guangzhou (201707010242)the Guangdong Natural Science Foundation 2017B030308002Science and Technology Program of Guangzhou 201707010242the National Key R & D Program of China 2016YFE0203300

Figures(4)

  • The MFI (ZSM-5 and silicate-1) membranes with porous α-Al2O3 substrates were synthesized by secondary growth method. The results of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate that the membranes with 5 μm thickness are composed of well-intergrown MFI crystals, which completely covers on the α-Al2O3 substrates in random orientation. The gas permeation measurements reveal that the resulting membranes are of high quality with few non-zeolitic pores. In addition, the separation properties of H2S/CH4 through the synthesized MFI membranes were investigated. Under the osmotic pressure of 0.3 and 0.5 MPa, the separation factors of H2S/CH4 by silicate-1 zeolite membrane are 1.99 and 4.44, and the separation factors of CH4/H2S by ZSM-5 zeolite membrane are 6.71 and 12.85, respectively.
  • 加载中
    1. [1]

      LIN Y S, KUMAKIRI I, NAIR B N, ALSYOURI H. Microporous inorganic membranes[J]. Sep Purif Methods, 2002,31(2):229-379. doi: 10.1081/SPM-120017009

    2. [2]

      CARO J, NOACK M, KÖLSCH P, SCHÄFER R. Zealite membrane-state of their development and perspective[J]. Microporous Mesoporous Mater, 2000,38(1):3-24. doi: 10.1016/S1387-1811(99)00295-4

    3. [3]

      SNYDER M A, TSAPATSIS M. Hierarchical nanomanufacturing:from shaped zeolite nanoparticles to high performance separation membranes[J]. Angew Chem Int Ed, 2007,46(40):7560-7573. doi: 10.1002/(ISSN)1521-3773

    4. [4]

      XIA S X, PENG Y, LU H B, WANG Z B. The influence of nanoseeds on the pervaporation performance of MFI-type zeolite membranes on hollow fibers[J]. Microporous Mesoporous Mater, 2016,222(1):128-137.  

    5. [5]

      UENO K, NEGISHI H, OKUNO T, SAITO T, TAWARAYAMA H, ISHIKAWA S, MIYAMOTO M, UEMIYA S, SAWADA Y, OUMI Y. A simple secondary growth method for the preparation of silicalite-1 membrane on a tubular silica support via gel-free steam-assisted conversion[J]. J Membr Sci, 2017,542(15):150-158.  

    6. [6]

      JIN S L, LEE Y J, TAE E L, YONG S P, YOON K B. Synthesis of zeolite as ordered multicrystal arrays[J]. Science, 2003,301(5634):818-821. doi: 10.1126/science.1086441

    7. [7]

      YAN Y, AND Z W. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization[J]. Chem Mater, 2001,13(3):1101-1107. doi: 10.1021/cm000849e

    8. [8]

      HEDLUNDA J, NOACKB M, KÖLSCH P, CREASERA D, CAROB J, STERTEA J. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. J Membr Sci, 1999,159(1/2):263-273.  

    9. [9]

      LAI R, GAVALAS G R. ZSM-5 membrane synthesis with organic-free mixtures[J]. Microporous Mesoporous Mater, 2000,38(2/3):239-245.  

    10. [10]

      UENO K, NEGISHI H, OKUNO T, SAITO T, TAWARAYAMA H, ISHIKAWA S, MIYAMOTO M, UEMIYA S, SAWADA Y, OUMI Y. High-performance silicalite-1 membranes on porous tubular silica supports for separation of ethanol/water mixtures[J]. Sep Purif Technol, 2017,187(31):343-354.  

    11. [11]

      LANG L, LIU X F, ZHANG B Q. Synthesis and characterization of h0h-oriented silicalite-1 films on α-Al2O3substrates[J]. Appl Surf Sci, 2008,254(8):2353-2358. doi: 10.1016/j.apsusc.2007.09.031

    12. [12]

      ARRUEB M, CORONAS J, MENÉNDEZ M, SANTAMARIA J. Separation of hydrocarbons from natural gas using silicalite membranes[J]. Sep Purif Technol, 2001,25(1/3):275-286.  

    13. [13]

      BEMAL M P, CORONAS J, MENÉNDEZ M, SANTAMARIA J. Separation of CO2/N2 mixtures using MFI-type zeolite membranes[J]. AIChE J, 2004,50(1):127-135. doi: 10.1002/aic.10012

    14. [14]

      MUREDDU M, FERINO I, ROMBI E, CUTRUFELLO M G, DEIANA P, ARDU A, MUSINU A, PICCALUGA G, CANNAS C. ZnO/SBA-15 composites for mid-temperature removal of H2S:Synthesis, performance and regeneration studies[J]. Fuel, 2012,102:691-700. doi: 10.1016/j.fuel.2012.05.013

    15. [15]

      HAFEZ M, MOHAMMAD S. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane[J]. J Membr Sci, 2014,470:159-165. doi: 10.1016/j.memsci.2014.07.025

    16. [16]

      WEICHIH L, YUPEI C, CHINGPING T. Pilot-scale chemical-biological system for efficient H2S removal from biogas[J]. Bioresour Technol, 2013,135:283-291. doi: 10.1016/j.biortech.2012.10.040

    17. [17]

      ÁLVAREZ-Cruz R, SÁNCHEZ-FLORES B E, TORRES-GONZÁLEZ J, ANTAÑO-LÓPEZ R, CASTAÑEDA F. Insights in the development of a new method to treat H2S and CO2 from sour gas by alkali[J]. Fuel, 2012,100:173-176. doi: 10.1016/j.fuel.2012.05.009

    18. [18]

      ŽÁK M, BENDOVÁ H, FRIESS K, BARA J E, IZÁK P. Single-step purification of raw biogas to biomethane quality by hollow fiber membranes without any pretreatment-an innovation in biogas upgrading[J]. Sep Purif Technol, 2018,203(12):36-40.  

    19. [19]

      WANG S M, WU D, HUANG H L, YANG Q Y, TONG M M, LIU D H, ZHONG C L. Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites[J]. Chin J Chem Eng, 2015,23:1291-1299. doi: 10.1016/j.cjche.2015.04.017

    20. [20]

      YANG W S, ZhANG B Q, LIU X F. Synthesis and characterization of SAPO-5 membranes on porous α-Al2O3 substrates[J]. Microporous Mesoporous Mater, 2009,117:391-394. doi: 10.1016/j.micromeso.2008.07.015

    21. [21]

      YANG Wen-shen, LANG Lin, WANG Feng-chan, YIN Xiu-li, WU Chuang-zhi. CO2/CH4 Separation Performance and CoAPSO-5 Zeolite Membrane Preparation[J]. Trans Chin Soc Agric Mach, 2009,44(9):114-117.  

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    8. [8]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    11. [11]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    16. [16]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    17. [17]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    18. [18]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

Metrics
  • PDF Downloads(7)
  • Abstract views(1857)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return