Citation: GONG Ming-yue, SONG Hua. Preparation of Ag and Y loaded metal-organic framework Ag-Y/MIL-101 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 240-248. shu

Preparation of Ag and Y loaded metal-organic framework Ag-Y/MIL-101 and its adsorption desulfurization performance

  • Corresponding author: SONG Hua, songhua2004@sina.com
  • Received Date: 22 November 2019
    Revised Date: 10 January 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21276048), the Natural Science Foundation of Heilongjiang Province of China (ZD201201) and the General Program of Education Department of Heilongjiang Province (12541060)the National Natural Science Foundation of China 21276048the General Program of Education Department of Heilongjiang Province 12541060the Natural Science Foundation of Heilongjiang Province of China ZD201201

Figures(13)

  • The Ag-Y/MIL-101 adsorbents were successfully prepared via loading Ag and Y onto MIL-101. The adsorbents were characterized by XRD, SEM-EDS, BET and TG-DTG methods. The effects of the loading order and concentrations of metals, the amount of AgNO3 solution and Y(NO3)3 solution, and the loading residence time on adsorptive removal performance of thiophene were studied. The conditions of adsorptive desufurization were also optimized. The results show that the lattice structure of MIL-101 remains after the introduction of metals. Compared with MIL-101, the specific surface area and pore volume of Ag-Y/MIL-101 decrease. The optimal preparation conditions of Ag-Y/MIL-101 adsorbent are to load Ag first and then Y with 30 mmol/L of both the loading concentrations of Ag and Y ion, 1 mL of both the dosages of AgNO3 solution and Y(NO3)3 solution, and 8 h of the loading residence time. The optimal desulfurization conditions are 10 mL of model oil, 0.05 g of Ag-Y/MIL-101 dosage, the adsorption temperature of 60℃, and the adsorption time of 8 h. At these conditions, the thiophene desulfurization capacity over Ag-Y/MIL-101 reaches 21.7 mg/g. The Ag can significantly improve the adsorption sulfur capacity of MIL-101, and Y can significantly improve the adsorption selectivity of MIL-101. Therefore, the synergistic effect of Ag and Y in Ag-Y/MIL-101 adsorbent makes it have higher sulfur capacity and thiophene desulfurization selectivity than MIL-101.
  • 加载中
    1. [1]

      YANG K, YAN Y, CHEN W, KANG H T, HAN Y, ZHANG W Q, FAN Y F, LI Z X. The high performance and mechanism of metal-organic frameworks and their composites in adsorptive desulfurization[J]. Polyhedron, 2018,152:202-215. doi: 10.1016/j.poly.2018.06.036

    2. [2]

      ULLAH R, BAI P, WU P, LIU B, SUBHAN F, YAN Z. Cation-anion double hydrolysis derived mesoporous mixed oxides for reactive adsorption desulfurization[J]. Microporous Mesoporous Mater, 2017,238:36-45. doi: 10.1016/j.micromeso.2016.02.037

    3. [3]

      RADWAN D R, MATLOOB A, MIKHAIL S, SAAD L, GUIRGUIS D. Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel[J]. J Hazard Mater, 2019,373:447-458. doi: 10.1016/j.jhazmat.2019.03.098

    4. [4]

      JIANG X S, XU W L, LIU W, YUE M B, ZHU Y Z, YANG M H. Facile preparation of cuprous oxide decorated mesoporous carbon by one-step reductive decomposition for deep desulfurization[J]. Fuel, 2019,241:777-785. doi: 10.1016/j.fuel.2018.12.107

    5. [5]

      GHUBAYRA R, NUTTALL C, HODGKISS S, CRAVEN M, KOZHEVNIKOVA E F, KOZHEVNIKOV I V. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids[J]. Appl Catal B:Environ, 2019,253:309-316. doi: 10.1016/j.apcatb.2019.04.063

    6. [6]

      TIAN F P, SHEN Q C, FU Z K, WU Y H, JIA C Y. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Process Technol, 2014,128:176-182. doi: 10.1016/j.fuproc.2014.07.018

    7. [7]

      LIAO J J, ZHANG Y J, WANG W B, XIE Y Y, CHANG L P. Preparation of γ-Al2O3 sorbents loaded with metal components and removal of thiophene from coking benzene[J]. Adsorption, 2012,18:181-187. doi: 10.1007/s10450-012-9392-4

    8. [8]

      HASAN Z, TONG M M, JUNG B K, AHMED I, ZHONG C L, JHUNG S H. Adsorption of pyridine over amino-functionalized metal-organic frameworks:Attraction via hydrogen bonding versus base-base repulsion[J]. Phys Chem C, 2014,118(36):21049-21056. doi: 10.1021/jp507074x

    9. [9]

      AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Hazard Mater, 2016,301:259-276. doi: 10.1016/j.jhazmat.2015.08.045

    10. [10]

      HUANG M H, CHANG G G, SU Y, XING H B, ZHANG Z G, YANG Y W, REN Q L, BAO Z B, CHEN B L. A metal-organic framework with immobilized Ag(I) for highly efficient desulfurization of liquid fuels[J]. Chem Commun, 2015,51(61):12205-12207. doi: 10.1039/C5CC03648H

    11. [11]

      CHEN X, SHEN B X, SUN H, ZHAN G X. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas:Experimental and computational investigations[J]. Microporous Mesoporous Mater, 2018,261:227-236. doi: 10.1016/j.micromeso.2017.11.014

    12. [12]

      QIN Y C, MO Z S, YU W G, DONG S W, DUAN L H, GAO X H, SONG L J. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014,292:5-15. doi: 10.1016/j.apsusc.2013.11.036

    13. [13]

      LI X J, SONG H, CHANG Y X. Study of isothermal equilibrium, kinetics and thermodynamics of adsorptive desulfurization on synthesized CuIYIIIY zeolite[J]. China Pet Process Petrochem Technol, 2018,20(2):24-33.

    14. [14]

      SONG H, WAN X, DAI M, ZHANG J J, LI F, SONG H L. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013,116:52-62. doi: 10.1016/j.fuproc.2013.04.017

    15. [15]

      YANG Q Y, LIU D H, ZHONG C L, LI J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013,113(10):8261-8323. doi: 10.1021/cr400005f

    16. [16]

      DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chem Rev, 2014,114(11):5695-5727. doi: 10.1021/cr4006473

    17. [17]

      KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014,20:376-380. doi: 10.1002/chem.201304291

    18. [18]

      KHAN NA, KIM C M, JHUNG S H. Adsorptive desulfurization using Cu-Ce/metal-organic framework:Improved performance based on synergy between Cu and Ce[J]. Chem Eng J, 2016,311:20-27.

    19. [19]

      RAJATI H, NAVARCHIAN A H, TANGESTANINEJAD S. Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation[J]. Chem Eng J, 2018,185(44):92-104.  

    20. [20]

      ZALOMAEVA O V, KOVALENKO K A, CHESALOV Y A, MEL'GUNOV M S, ZAIKOVSKII V I, KAICHEV V V, SOROKIN A B, KHOLDEEVA O A, FEDIN V P. Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101:Synthesis, characterization and catalytic properties[J]. Dalton Trans, 2011,40(7)1441. doi: 10.1039/c0dt01474e

    21. [21]

      LIU Fei, ZHAO Yan-liang, LI Peng, LIANG Shu-jun, WANG Zhi-yong. Preparation and hydrogen storage properties of metal organic frameworks MIL-101 loaded with nano Ni[J]. Acta Mater Compositae Sin, 2018,35(11):3205-3211.  

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    3. [3]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    19. [19]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(9)
  • Abstract views(433)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return