Citation: GUO Sheng-da, HU Xian-chao, YANG Jian-gao, CHEN Hao, ZHOU Yang. Palladium nanoparticles supported on hollow mesoporous tungsten carbide microsphere as electrocatalyst for formic acid oxidation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 698-702. shu

Palladium nanoparticles supported on hollow mesoporous tungsten carbide microsphere as electrocatalyst for formic acid oxidation

  • Corresponding author: ZHOU Yang, yangzhou1998@126.com
  • Received Date: 20 November 2015
    Revised Date: 25 February 2016

    Fund Project: Jiangxi Natural Science Foundation of China 20151BAB213011and Key Project of Jiangxi University of Science and Technology NSFJ2015-K18Education Department Project Fund of Jiangxi Province GJJ150665, GJJ150648The project was supported by the National Natural Science Foundation of China 51174101, 51464013和51404110

Figures(5)

  • Hollow tungsten carbide and cobalt spheres (HTCCS) with cobalt concentration of 6% were prepared by spray conversion and reduction carbonization methods. The HTCCS with diameters of about 8-18μm were covered with 0.3-1.0μm microporous. The Pd/WC catalyst was prepared through the replacement reaction between Co nanoparticles on the surface of HTCCS and PdCl4. The electro-catalytic performances for formic acid electro-oxidation were investigated by cyclic voltammetry and chronoamperometry. It exhibited the low onset potential, excellent catalytic activity and stability compared with Pd/C due to the larger electrochemical surface area (ECSA) and the synergistic effect between Pd and WC.
  • 加载中
    1. [1]

      WANG K Q, WANG B, ChANG J F, FENG L G, XING W. Formic acid electrooxidation catalyzed by Pd/SmOx-C hybrid catalyst in fuel cells[J]. Electrochim Acta, 2014,150:329-336. doi: 10.1016/j.electacta.2014.10.143

    2. [2]

      ChANG J F, FENG L G, LIU C P, XING W, HU X L. An Effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angew Chem Int Ed, 2014,53(1):122-126. doi: 10.1002/anie.v53.1

    3. [3]

      GUO C X, ZhANG L Y, MIAO J W, ZhANG J T, LI C M. DNA-functionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells[J]. Adv Energy Mater, 2013,3(2):167-171. doi: 10.1002/aenm.v3.2

    4. [4]

      ZHOU Yang, HU Xian-chao, LI Li-qing, CHEN Xi-rong. Palladium nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as electrocatalyst for formic acid oxidation[J]. Acta Phys Chim Sin, 2014,30(1):83-87.  

    5. [5]

      MARINSEK M, SALA M, JANCAR B. A study towards superior carbon nanotubes-supported Pd-based catalysts for formic acid electro-oxidation:Preparation, properties and characterisation[J]. J Power Sources, 2013,235:111-116. doi: 10.1016/j.jpowsour.2013.02.020

    6. [6]

      FENG Y Y, ZHANG G R, XU B Q. Catalytic Pd-on-Au nanostructures with improved Pd activity for formic acid electro-oxidation[J]. Rsc Adv, 2013,3(6):1748-1752. doi: 10.1039/c2ra22397j

    7. [7]

      HAM D J, HAN S, PAK C, JI S M, JIN S A. High electrochemical performance and stability of Co-deposited Pd-Au on phase-pure tungsten carbide for hydrogen oxidation[J]. Top Catal, 2012,55(14/15):922-930.  

    8. [8]

      HU F P, CUI G F, WEI Z D, SHEN P K. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes[J]. Electrochem Commun, 2008,10(9):1303-1306. doi: 10.1016/j.elecom.2008.06.019

    9. [9]

      HU X D, ZENG Z F, HU F P, WANG J G, SHEN P K. Alcohol oxidation on Pd catalyst supported on tungsten carbides/carbon nanotubes[J]. Chin J Catal, 2008,29(10):1027-1031.  

    10. [10]

      YAN Z, GU Y, WEI W, JIANG Z, XIE J, SHEN P K. Tungsten carbide synthesized by polystyrene sphere template method promoting Pd electrocatalyst for alcohol oxidation in alkaline media[J]. Fuel Cells, 2015,15(2):256-261. doi: 10.1002/fuce.v15.2

    11. [11]

      HAN S, YOUN D H, LEE M H, LEE J S. Tungsten carbide and CNT-graphene-supported Pd electrocatalyst toward electrooxidation of hydrogen[J]. ChemCatChem, 2015,7(9):1483-1489. doi: 10.1002/cctc.v7.9

    12. [12]

      YIN M, LI Q F, JENSEN J O, HUANG Y J, CLEEMANN L N, BJERRUM N J, XING W. Tungsten carbide promoted Pd and Pd-Co electrocatalysts for formic acid electrooxidation[J]. J Power Sources, 2012,219:106-111. doi: 10.1016/j.jpowsour.2012.07.032

    13. [13]

      SHI M Q, LIU W M, ZHAO D, CHU Y Q, MA C A. Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid[J]. J Solid State Electrochem, 2014,18(7):1923-1932. doi: 10.1007/s10008-014-2440-0

    14. [14]

      ZOU L L, REN M J, ZHANG H F, ZOU Z Q, YANG H, FENG S L. Pd nanoparticles supported on tungsten carbide embedded onto ordered mesoporous carbons for electrocatalysis of formic acid oxidation[J]. Int J Electrochem Sci, 2013,8(5):6180-6190.  

    15. [15]

      GUO Sheng-da, YANG Jian-gao, LV Jian, ZHU Er-tao, CHEN Hao, ZHANG Xue-hui. Morphology of nanophase WC/6Co composite powder prepared by spray conversion method[J]. Chin Rare Met, 2015,39:6-9.  

    16. [16]

      HU X, ZHOU Y, WEN H R, ZHONG H M. Hierarchical hollow tungsten trioxide sphere as an electrocatalyst support for formic acid electrooxidation[J]. J Electrochem Soc, 2014,165(5):F583-F587.  

    17. [17]

      YANG J, XIE Y, WANG R H, JIANG B J, TIAN C G, MU G, YIN J, WANG B, FU H G. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation[J]. Acs Appl Mater Interfaces, 2013,5(14):6571-6579. doi: 10.1021/am401216s

    18. [18]

      MELLINGER Z J, KELLY T G, CHEN J G G. Pd-modified tungsten carbide for methanol electro-oxidation:From surface science studies to electrochemical evaluation[J]. ACS Catal, 2012,2(5):751-758. doi: 10.1021/cs200620x

    19. [19]

      ZELLNER M B, CHEN J G G. Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts[J]. Catal Today, 2005,99(3/4):299-307.

    20. [20]

      HAM D J, KIM Y K, HAN S H, LEE J S. Pt/WC as an anode catalyst for PEMFC:Activity and CO tolerance[J]. Catal Today, 2008,132(1/4):117-122.

  • 加载中
    1. [1]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    2. [2]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    3. [3]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    4. [4]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    5. [5]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    6. [6]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    7. [7]

      Jun LuoYanya LiuJianghuaxiong ZhuChengxiong WangYunkun ZhaoDong YanJian LiLichao Jia . A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion. Chinese Chemical Letters, 2025, 36(7): 110171-. doi: 10.1016/j.cclet.2024.110171

    8. [8]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    9. [9]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    10. [10]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    11. [11]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    12. [12]

      Jinzhou ZhengChaozheng HeChenxu Zhao . Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency. Chinese Chemical Letters, 2025, 36(7): 111056-. doi: 10.1016/j.cclet.2025.111056

    13. [13]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    14. [14]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    15. [15]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    16. [16]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

    17. [17]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    18. [18]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    19. [19]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    20. [20]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

Metrics
  • PDF Downloads(0)
  • Abstract views(794)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return