Citation: YI Sha, YANG Bin, ZHAO Zhi-jing. Effect of Ce on the structure and properties of PtCu composite membrane electrodes[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1266-1271. shu

Effect of Ce on the structure and properties of PtCu composite membrane electrodes

  • Corresponding author: YANG Bin, yangbin@kmust.edu.cn
  • Received Date: 13 June 2016
    Revised Date: 24 July 2016

Figures(4)

  • All the membrane electrodes were prepared by ion beam sputtering (IBS) apparatus. Vacuum annealing in combination with acid etching was used as post-processing. The high resolution transmission electron microscopy and X-ray diffraction were employed to investigate the surface morphology and alloying degree of samples. The electrochemical performance was used to detect hydrogen evolution property. The result confirmed that, with the same condition of post-processing, the membrane electrode doped Ce had cross-bridged structure and higher alloying degree, and the electrochemical performance was enhanced by 92.25% compared to pure Pt.
  • 加载中
    1. [1]

      LI W Z, XIN Q, YAN Y S. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell:The effect of catalyst composition[J]. Int J Hydrogen Energy, 2010,35(6):2530-2538. doi: 10.1016/j.ijhydene.2010.01.013

    2. [2]

      JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalyst on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011,39(10):792-795. doi: 10.1016/S1872-5813(11)60046-7

    3. [3]

      JOO J, KIM P, KIM W, YI J. Effect of the preparation conditions of carbon-supported Pt catalyst on PEMFC performance[J]. J Appl Electrochem, 2009,39(1):135-140. doi: 10.1007/s10800-008-9645-9

    4. [4]

      ZHANG Xi-gui, WANG Tao, XIA Bao-jia, QIN Pei, XU Nai-xin. Study on oxygen electrode of PEMFC-effect of Ni, Co on properties of Pt/C electro-catalyst[J]. J Fuel Chem Technol, 2003,31(5):411-414.  

    5. [5]

      LIU M Y, HE Y Q, MAO Z Q, XIE X F. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. Chin J Power Sources, 2002,26(zl):247-249.

    6. [6]

      HU Tao, YANG Jian, ZHAO Jun, WANG Dan-jun, SONG Huan-ling, CHOU Ling-jun. Preparation of a Cu-Ce-O catalyst by urea combustion for removing CO from hydrogen[J]. Chin J Catal, 2007,28(10):844-846. doi: 10.1016/S1872-2067(07)60069-2

    7. [7]

      XU Yun-fei.Stduy of Pt-Ru/C catalyst of proton-exchange membrane fuel cell[D].Tianjin:Tianjin University, 2007.

    8. [8]

      MA Bo-yuan, ZHAO Xing. Theoretical study on CO poisoning of Pt-Ru catalysts[J]. J Liaoning Univ Technol, 2008,28(4):274-277.  

    9. [9]

      LI L, WANG H X, XU BQ, LI J L, LU T H, MAO Z Q. Study of PEMFC electro-catalysts:Characteristics of a homemade CO-tolerant Pt-Ru/C catalyst[J]. Acta Chim Sin, 2003,61(6):818-823.

    10. [10]

      HAN Xing-wang.Aerobic alcohol oxidation catalyzed by copper catalyst[D].Zhejiang:Zhejiang University of Technology, 2014.

    11. [11]

      ZHANG Xiao-wei.Interface control and functional assembly of copper-based composite catalysts[D].Beijing:University of Science and Technology Beijing, 2015.

    12. [12]

      WANG Li-min, ZHANG Jin-guo, WANG Lin-shan. The copper and copper alloy powders application and research status[J]. Powder Metall Ind, 2013,23(1):52-57.  

    13. [13]

      LINDNEY N, KAZACHKIN A D V, LUEBKE D R, JULIE L D. Effect of catalyst pre-reduction temperature on the reaction of 1, 2-dichloroethane and H2 catalyzed by SiO2-supported PtCu bimetallics[J]. Appl Catal A:Gen, 2012,415:59-69.

    14. [14]

      KANG Qiu-zhen, ZHANG Shang-hu. Research, application and market prospects of cerium series products[J]. Gansu Metall, 2013,35(3):44-46.  

    15. [15]

      TROVARELLI A, FORNASIERO P.Catalysis by Ceria and Related Materials (Volume 2)[M].London:Imperial College Press, 2013.

    16. [16]

      ZHAN Wang-cheng, GUO Yun, GONG Xue-qing, GUO Yang-long, WANG Yan-qin, LU Guan-zhong. Current status and perspectives of rare earth catalytic materials and catalysis[J]. Chin J Catal, 2014,35(8):1238-1250. doi: 10.1016/S1872-2067(14)60189-3

    17. [17]

      LIU S, WU X D, WENG D D, RAN R. Ceria-based catalysts for soot oxidation:A review[J]. J Rare Earths, 2015,33(6):567-590. doi: 10.1016/S1002-0721(14)60457-9

    18. [18]

      WEI Y H, ZHAO Z, JIAO J Q, LIU J, DUAN A J, JIANG G Y. Preparation of ultrafine Ce-based oxide nanoparticles and their catalytic performances for diesel soot combustion[J]. J Rare Earths, 2014,32(2):124-130. doi: 10.1016/S1002-0721(14)60041-7

    19. [19]

      LEADRO F N, RENATA F M, RODRIGO F S, OSVALDO A S. Catalytic combustion of soot over ceria-zinc mixed oxides catalysts supported onto cordierite[J]. J Environ Sci, 2014,26(3):694-701. doi: 10.1016/S1001-0742(13)60442-8

    20. [20]

      WU W W, FAN Y J, WU X H, LIAO S, HUANG X F, LI X H. Preparation of nano-sized cerium and titanium pyrophosphates via solid-state reaction at room temperature[J]. Rare Metals, 2009,28(1):33-38. doi: 10.1007/s12598-009-0007-5

    21. [21]

      DING Meng-lin, ZHANG Si-cai, LV Ning-ning, ZUO Shu-feng. Influence of Pt-Ce on structure and performance of Cu/Al2O3 and its application in catalytic oxidation of benzene[J]. J Chin Rare Earths Soc, 2013,31(3):289-295. doi: 10.1016/S1002-0721(12)60274-9

    22. [22]

      LI X C, LUO L T, LI F Y. Study on the surface behavior of Pt-Ce/γ-Al2O3[J]. J Rare Earths, 1992,10(3):199-203.

    23. [23]

      ZHI K D, LIU Q S, ZHAO R Q, HE R X, ZHANG L F. Preparation and characterization of Cu-Ce-La mixed oxide as water-gas shift catalyst for fuel cells application[J]. J Rare Earths, 2008,26(4):538-543. doi: 10.1016/S1002-0721(08)60133-7

    24. [24]

      ZHOU Gui-lin, WEI Meng-ying, FEI Li-sha, WU Mao, CAO Yuan-yuan, ZHOU Xin-xing, XIE Hong-mei. Removal of ρ-nitrophenol from aqueous solutions by catalytic oxidation over Cu-Ce catalyst[J]. Water Treat Technol, 2012,38(2):52-55.  

    25. [25]

      YANG Y, YANG B, PENG J C ZHAO Z J, ZHAO Y M. Enhanced hydrogen evolution properties obtained by electrochemical modification of carbon-supported platinum-copper bimetallic nanocatalysts and structural characterization[J]. RSC Adv, 2015,5:20981-20986. doi: 10.1039/C4RA16060F

    26. [26]

      LI Hua-ling, LIAO Shi-jun, SONG Hui-yu. Preparation of special morphologic nano-platinum and its application in fuel cell[J]. Mod Chem Ind, 2013,33(5):26-30.  

    27. [27]

      CHEN Ji-min, ZHANG Jie-fei. Study on annealing process and microstructure of Al-Cu-Ce alloy[J]. Hot Working Technol, 2013,42(20):214-216.  

  • 加载中
    1. [1]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    2. [2]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    3. [3]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    14. [14]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(1842)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return