Citation: WANG Mei-jun, SHEN Yan-feng, GUO Jiang, HU Yong-feng, KONG Jiao, CHANG Li-ping. XANES study on effect of acid treatment on sulfur forms in Yima coal and their transformation behavior during pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 641-648. shu

XANES study on effect of acid treatment on sulfur forms in Yima coal and their transformation behavior during pyrolysis

  • Corresponding author: WANG Mei-jun, wangmeijun@tyut.edu.cn
  • Received Date: 12 May 2020
    Revised Date: 2 June 2020

    Fund Project: The project was supported by National Natural Science Foundation of China (21878208, U1910201), Research Project Supported by Shanxi Scholarship Council of China (2017-03) and Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP)National Natural Science Foundation of China 21878208Research Project Supported by Shanxi Scholarship Council of China 2017-03National Natural Science Foundation of China U1910201

Figures(7)

  • Effect of acid treatment on specific surface area, sulfur forms and their transformation during pyrolysis of Yima coal were investigated by XANES technique. Results show that the specific surface area of acid-treated coals is higher than that of raw coal due to removal of some mosaic minerals in coal matrix and opening of some pores. Most of the minerals and inorganic sulfur are removed by the acid treatment, the relative percentages of sulfide, sulfoxide and sulfone in YMN are higher than that of YMR and YMD due to the higher oxidability of HNO3. Sulfur forms on the coal surface are more modified than that in the coal bulk by the acid treatment. The release amount of sulfur-containing gases during pyrolysis of acid-treated coals decreases, but the accumulated release yields increase due to removal of most alkaline minerals and the relative increase of thermally decomposable sulfur forms in coal. The main sulfur forms show a more even distribution in acid-treated coal chars due to the inter-conversions between different sulfur forms during pyrolysis. HCl-HF-HNO3 process could remove most of the minerals and inorganic sulfur, and change distribution of sulfur forms, which provides a suitable guidance for utilization of high ash, pyrite-rich high-sulfur coals.
  • 加载中
    1. [1]

      DEMIRBAŞ A. Demineralization and desulfurization of coals via column froth flotation and different methods[J]. Energy Convers Manage, 2002,43(7):885-895. doi: 10.1016/S0196-8904(01)00088-7

    2. [2]

      SAHINOGLU E. Cleaning of high pyritic sulfur fine coal via flotation[J]. Adv Powder Technol, 2018,29(7):1703-1712. doi: 10.1016/j.apt.2018.04.005

    3. [3]

      LI Bin, DU Xia-ru, LI Qing-feng, ZHANG Jian-min, WANG Yang. The effect of minerals on transformation of sulfur during pyrolysis and partial gasification[J]. Environ Sci, 2004,25(1):149-153.  

    4. [4]

      WANG B, ZHAO S, HUANG Y, ZHANG J. Effect of some natural minerals on transformation behavior of sulfur during pyrolysis of coal and biomass[J]. J Anal Appl Pyrolysis, 2014,105:284-294. doi: 10.1016/j.jaap.2013.11.015

    5. [5]

      ZHANG Y, LIANG P, JIAO T, WU J, ZHANG H. Effect of foreign minerals on sulfur transformation in the step conversion of coal pyrolysis and combustion[J]. J Anal Appl Pyrolysis, 2017,127:240-245. doi: 10.1016/j.jaap.2017.07.028

    6. [6]

      JIA X, WANG Q, CEN K, CHENG L. Sulfur transformation during the pyrolysis of coal mixed with coal ash in a fixed bed reactor[J]. Fuel, 2016,177:260-267. doi: 10.1016/j.fuel.2016.03.013

    7. [7]

      MESROGHLI S, YPERMAN J, JORJANI E, VANDEWIJNGAARDEN J, REGGERS G, CARLEER R, NOAPARAST M. Changes and removal of different sulfur forms after chemical desulfurization by peroxyacetic acid on microwave treated coals[J]. Fuel, 2015,154:59-70. doi: 10.1016/j.fuel.2015.03.058

    8. [8]

      TANG L, WANG S, GUO J, TAO X, HE H, FENG L, CHEN S, XU N. Exploration on the removal mechanism of sulfur ether model compounds for coal by microwave irradiation with peroxyacetic acid[J]. Fuel Process Technol, 2017,159:442-447. doi: 10.1016/j.fuproc.2016.12.019

    9. [9]

      ZHANG L, LI Z, YANG Y, ZHOU Y, KONG B, LI J, SI L. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal[J]. Fuel, 2016,184:418-429. doi: 10.1016/j.fuel.2016.07.002

    10. [10]

      WANG Mei-jun, FU Chun-hui, CHANG Li-ping, XIE Ke-chang. Effect of fractional step acid treatment process on the structure and pyrolysis characteristics of Ximeng brown coal[J]. J Fuel Chem Technol, 2012,40(8):906-911. doi: 10.3969/j.issn.0253-2409.2012.08.002 

    11. [11]

      ZHANG Jin-ling, WANG Mei-jun, CHEN Wang-shu, FU Chun-hui, REN Xiu-rong, CHANG Li-ping. Effect of step acid treatment process on the structure and pyrolysis characteristics of Ximeng brown coal:Formation of gaseous products[J]. J Fuel Chem Technol, 2013,41(10):1160-1165.  

    12. [12]

      HUFFMAN G P, MITRA S, HUGGINS F E, SHAH N, VAIDYA S, LU F. Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy[J]. Energy Fuels, 1991,5(4):574-581. doi: 10.1021/ef00028a008

    13. [13]

      WANG M, LIU L, WANG J, CHANG L, WANG H, HU Y. Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks[J]. Fuel Process Technol, 2015,131:262-269. doi: 10.1016/j.fuproc.2014.10.038

    14. [14]

      WANG M, HU Y, WANG J, CHANG L, WANG H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. J Anal Appl Pyrolysis, 2013,104(10):585-592.  

    15. [15]

      WANG M, JIA T, WANG J, HU Y, LIU F, WANG H, CHANG L. Changes of sulfur forms in coal after tetrachloroethylene extraction and theirs transformations during pyrolysis[J]. Fuel, 2016,186:726-733. doi: 10.1016/j.fuel.2016.09.007

    16. [16]

      YIN Yan-shan, ZHANG Yi, CHEN Hou-tao, LIU Liang, YAN Xiao-zhong, CHEN Dong-lin. Characterization of mineral matters and carbonaceous structure of high-ash coals by vibrational spectroscopy[J]. J Fuel Chem Technol, 2015,43(10):1167-1175. doi: 10.3969/j.issn.0253-2409.2015.10.003 

    17. [17]

      MENG LI-li, FU Chun-hui, WANG Mei-jun, CHANG Li-ping. Effect of alkali carbonates on the formation of H2S and NH3 during temperature programmed pyrolysis of brown coal[J]. J Fuel Chem Technol, 2012,40(2):138-142. doi: 10.3969/j.issn.0253-2409.2012.02.002 

    18. [18]

      LIU Shi-wei, ZOU Chong, ZHAO Jun-xue, LI Xiao-ming, ZHE Yuan, WU Hao, MA Cheng. Speciation of sulfur and regularity of pyrolysis gas evolution in different coking coals[J]. Coal Convers, 2018,41(2):24-30. doi: 10.3969/j.issn.1004-4248.2018.02.004

    19. [19]

      LIU Fen-rong, LI Wen, LI Bao-qing, BAI Zong-qing. Sulfur transformation during pyrolysis of Zunyi coal by atmosphere pressure-temperature programmed reduction-mass spectrum[J]. J Fuel Chem Technol, 2008,36(1):6-9. doi: 10.3969/j.issn.0253-2409.2008.01.002 

    20. [20]

      ZHAO H, BAI Z, YAN J, BAI J, LI W. Transformations of pyrite in different associations during pyrolysis of coal[J]. Fuel Process Technol, 2015,131:304-310. doi: 10.1016/j.fuproc.2014.11.035

    21. [21]

      LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N-and S-functional groups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013,41(11):1287-1293.  

    22. [22]

      LIU L, FEI J, CUI M, HU Y, WANG J. XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a high-sulfur bituminous coal[J]. Fuel Process Technol, 2014,121:56-62. doi: 10.1016/j.fuproc.2013.12.008

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    8. [8]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    14. [14]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    15. [15]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    16. [16]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    17. [17]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    18. [18]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(3)
  • Abstract views(615)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return