Deactivation and regeneration of commercial SCR catalysts used in coal fired power plant
- Corresponding author: YU Jie, yujie@hust.edu.cn
Citation:
ZHANG E-song, YU Jie, WANG Le-le, WANG Ben, SUN Lu-shi. Deactivation and regeneration of commercial SCR catalysts used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(10): 1249-1256.
Ministry of environmental protection of People's Republic of China. China Environmental Statistics Annual Report. 2015[M]. China Environmental Press, 2016.
XIE X, LU J, HUMS E, HUANG Q, LU Z. Study on the deactivation of V2O5-WO3/TiO2 selective catalytic reduction catalysts through transient kinetics[J]. Energy Fuels, 2015,29(6):3890-3896. doi: 10.1021/acs.energyfuels.5b01034
TANG Hao, LU Qiang, YANG Jiang-yi, LI Hui, LI Wen-yan, YANG Yong-ping. Research on recycling and characterization analysis of the waste SCR catalyst[J]. J Fuel Chem Technol, 2018,46(2):233-242. doi: 10.3969/j.issn.0253-2409.2018.02.014
WU Wei-hong, WU Hua, LUO Jia, JIANG Xiao. Research progress on the regeneration of SCR catalysts for flue gas denitrification[J]. Appl Chem Ind, 2013,42(7):1304-1307.
YU Yan-ke, HE Chi, CHEN Jin-sheng, MENG Xiao-ran. Deactivation mechanism of de NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. J Fuel Chem Technol, 2012,40(11):1359-1365. doi: 10.3969/j.issn.0253-2409.2012.11.013
LEE J B, KIM S K, DONG W K, KIM K H, CHUN S N, HUR K B, SANG M J. Effect of H2SO4 concentration in washing solution on regeneration of commercial selective catalytic reduction catalyst[J]. Korean J Chem Eng, 2012,29(2):270-276. doi: 10.1007/s11814-011-0156-8
LI Ru-bing, WU Yu-feng, ZHANG Qi-jun, CHEN Xi, LIU Bin. A comprehensive review of the regeneration and recovery of commercial SCR catalyst (V2O5-WO3/TiO2)[J]. Mod Chem Ind, 2017(3):29-33.
LI J, TANG X, GAO F, YI H, ZHAO S. Studies on the calcium poisoning and regeneration of commercial De-NOx SCR catalyst[J]. Chem Pap, 2017,71(10):1921-1928. doi: 10.1007/s11696-017-0186-8
YU Xiao-wei, ZHOU Yu, LIU Shuai, SONG Chao. Reason analysis for deactivation of commercial SCR de-NOx catalyst and its regeneration[J]. Therm Power Gener, 2014,43(2):109-113. doi: 10.3969/j.issn.1002-3364.2014.02.109
GAO F, TANG X, YI H, ZHAO S, ZHANG T, LI D, MA D. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3[J]. Sci Bull, 2014,59(31)3966. doi: 10.1007/s11434-014-0496-y
GAO Feng-yu, TANG Xiao-long, YI Hong-hong, ZHAO Shun-zheng, LI Dong, MA Ding, ZHANG Tong-tong. Sodium poisoning mechanism and regeneration of commercial De-NOx SCR catalysts[J]. J Cent South Univ Technol, 2015,46(6):2382-2390.
TANABE K, MISONO M, ONO Y, HATTORI H. New solid acids and bases:Their catalytic properties[J]. Stud Surf Sci Catal, 1989,51:1-365. doi: 10.1016/S0167-2991(08)61044-7
LIETTI L, RAMIS G, BERTI F, TOLEDO G, ROBBA D, BUSCA G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998,42(1/2):101-116.
KHODAYARI R, ODENBRAND C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Appl Catal B:Environ, 2001,30(1/2):87-99.
SHEN Jia-quan, ZHANG Jian-hua, ZOU Yi-jin, YU Yan-ke, CHEN Jin-sheng, WANG Jin-xiu, JIANG Chang-shui. Mechanism of deactivation and regeneration for corrugated type SCR catalysts[J]. Electron Power Environ Protect, 2016(3):8-11. doi: 10.3969/j.issn.1674-8069.2016.03.003
ZHANG Pei, WU Si-ming, FANG Tuo-tuo, CHEN Yan-ping, SHI Yao, HE Yi. Deactivation and regeneration of commercial SCR catalysts used in a 660 MW coal-fired power plant[J]. J Chem Eng Chin Univ, 2017,31(5):1186-1192. doi: 10.3969/j.issn.1003-9015.2017.05.023
NICOSIA D, CZEKAJ I, KRÖCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution:Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B:Environ, 2008,77(3/4):228-236.
ZHANG Dao-jun, MA Zi-ran, SUN Qi, XU Wen-qiang, LI Yong-long, WANG Bao-dong, ZHU Tao, LIN De-hai, JI Guang-hui, MA Jing. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chem Ind Eng Prog, 2018(7):2635-2643.
KLING Å, ANDERSSON C, MYRINGER Å, ESKILSSON D, JÄRÅS S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Appl Catal B:Environ, 2007,69(3/4):240-251.
LIU F, ASAKURA K, HE H, SHAN W, SHI X, ZHANG C. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2011,103(3):369-377.
SHANG X, HU G, CHI H, ZHAO J, ZHANG F, XU Y, ZHANG Y, LI J, CHEN J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. J Ind Eng Chem, 2012,18(1):513-519. doi: 10.1016/j.jiec.2011.11.070
CHEN L, LI J, GE M. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J Phys Chem C, 2009,113(50):21177-21184. doi: 10.1021/jp907109e
DUAN Rui-rui. Influence on modulation of the V4+/5+ ratio and rate of V4+ and V5+ redox and SCR DeNOx activity[D]. Harbin: Engineering University, 2014.
CHENG Hua. Study of the deactivation causes and the regeneration methods for commercial V2O5-WO3/TiO2 SCR catalyst[D]. Guangzhou: South China University of Technology, 2013.
MA Jian-rong, HUANG Zhang-gen, LIU Zhen-yu, GUO Shi-jie. Effect of regeneration method on activity for simultaneous removal of SO2 and nO over V2O5/AC catalyst-sorbent[J]. Chin J Catal, 2005,26(6):463-469. doi: 10.3321/j.issn:0253-9837.2005.06.009
JIANG Ye, GAO Xiang, WU Wei-hong, ZHANG Yong-xin. Review of the deactivation of selective catalytic reduction DeNOx catalysts[J]. Proc CSEE, 2013,33(14):18-31.
PENG Y, LI J, SHI W, XU J, HAO J. Design strategies for development of SCR catalyst:Improvement of alkali poisoning resistance and novel regeneration method[J]. Environ Sci Technol, 2012,46(22)12623. doi: 10.1021/es302857a
BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.
KHODAYARI R, ODENBRAND C U I. Regeneration of commercial SCR catalysts by washing and sulphation:Effect of sulphate groups on the activity[J]. Appl Catal B:Environ, 2001,33(4):277-291. doi: 10.1016/S0926-3373(01)00193-X
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
1: pressure regulating valve; 2: mass flow meter; 3: mixed gas cylinders; 4: three-way valve; 5: square reactor; 6: heating furnace; 7: catalysts; 8: thermocouple; 9: flue gas analyzer; 10: frequency converter; 11: vacuum pump; 12: drying tube
(space velocity 1418 h-1, NH3/NO=1.0)
(space velocity 1418 h-1, NH3/NO=1.0)
a: water washing; b: H2SO4 washing;
c: water washing + sulphated at 350 ℃;
d: water washing + sulphated at 400 ℃;
e: water washing + sulphated at 450 ℃
a: fresh; b: deactivated; c: water washing; d: H2SO4 washing
a: water washing+sulphated at 350 ℃;
b: water washing+sulphated at 400 ℃;
c: water washing+sulphated at 450 ℃;
d: water washing