Citation: Jiang Yu, Ma Junlin, Zhu Nan. Flexible and Printed Wearable Electrochemical Sensor[J]. Chemistry, ;2020, 83(4): 325-333. shu

Flexible and Printed Wearable Electrochemical Sensor

  • Corresponding author: Zhu Nan, nanzhu@dlut.edu.cn
  • Received Date: 8 January 2020
    Accepted Date: 5 February 2020

Figures(8)

  • Monitoring of human health and chronic diseases has become a world-leading subject in the scientific fields including materials science, information technology, electronic technology, and analytical chemistry. Wearable devices for real-time monitoring of human activity and heart rate, blood pressure, EEG, and electrocardiograms by continuously acquiring physical signals such as temperature, pressure, and stress have been commercialized. Wearable chemical sensors still face many problems, such as the flexibility, sensitivity, accuracy of the sensor, and the fit to human skin. Aiming at these problems, this paper takes printing technology as the starting point, summarizes the application of various flexible substrates in the field of electrochemical sensors/biosensors, and proposes the development direction of wearable sensors.
  • 加载中
    1. [1]

      Qiao H, Zhang Y, Huang Z, et al. Nano Energy, 2018, 50:126~132. 

    2. [2]

      Sun K, Wei T S, Ahn B Y, et al. Adv. Mater., 2013, 25(33):4539~4543. 

    3. [3]

      Lim J, Jung H, Baek C, et al. Nano Energy, 2017, 41:337~343. 

    4. [4]

      Van Osch T H J, Perelaer J, deLaat A W M, et al. Adv. Mater., 2008, 20(2):343~345. 

    5. [5]

      Y Wang, Zhang Y Z, Dubbink D, et al. Nano Energy, 2018, 49:481~488. 

    6. [6]

      Kim J, Kumar R, Bandodkar A J, et al. Adv. Electron. Mater., 2017, 3(1):1600260. 

    7. [7]

      Lee C H, Kim D R, Zheng X. Nano Lett., 2011, 11(8):3435~3439. 

    8. [8]

      Tiefenauer R F, Tybrandt K, Aramesh M, et al. ACS Nano, 2018, 12(3):2514~2520. 

    9. [9]

      Li D, Lai W Y, Zhang Y Z, et al. Adv. Mater., 2018, 30(10):1704738~1704751. 

    10. [10]

      Rim Y S, Bae S H, Chen H, et al. Adv. Mater., 2016, 28(22):4415~4440. 

    11. [11]

      Bariya M, Shahpar Z, Park H, et al. ACS Nano, 2018, 12(7):6978~6987. 

    12. [12]

      Nathan A, Ahnood A, Cole M T, et al. Proc. IEEE, 2012, 100(Special Centennial Issue): 1486~1517.

    13. [13]

      Kolliopoulos A V, Metters J P, Banks C E. Anal. Methods, 2013, 5(14):3490. 

    14. [14]

      Sempionatto J R, Nakagawa T, Pavinatto A, et al. Lab Chip, 2017, 17(10):1834~1842. 

    15. [15]

      Kim J, Valdes-Ramirez G, Bandodkar A J, et al. Analyst, 2014, 139(7):1632~1636. 

    16. [16]

      Kim J, Imani S, de Araujo W R, et al. Biosens. Bioelectron., 2015, 74:1061~1068. 

    17. [17]

      Gao W, Nyein H Y Y, Shahpar Z, et al. ACS Sensors, 2016, 1(7):866~874. 

    18. [18]

      Nyein H Y, Gao W, Shahpar Z, et al. ACS Nano, 2016, 10(7):7216~7224. 

    19. [19]

      Gao W, Emaminejad S, Nyein H Y Y, et al. Nature, 2016, 529(7587):509~514. 

    20. [20]

      Emaminejad S, Gao W, Wu E, et al. PNAS, 2017, 114(18):4625~4630. 

    21. [21]

      Moyer J, Wilson D, Finkelshtein I, et al. Diabetes Technol. Ther., 2012, 14(5):398~402. 

    22. [22]

      Gonzalo-Ruiz J, Mas R, de Haro C, et al. Biosens. Bioelectron., 2009, 24(6):1788~1791. 

    23. [23]

      Xue M, Zhang Z, Zhu N, et al. Langmuir, 2009, 25(8):4347~4351. 

    24. [24]

      Xue M Q, Yang Y L, Cao T B. Adv. Mater., 2008, 20(3):596~600. 

    25. [25]

      Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Nat. Commun., 2015, 6:7461. 

    26. [26]

      Choi D H, Kim J S, Cutting G R, et al. Anal. Chem., 2016, 88(24):12241~12247. 

    27. [27]

      Su M, Li F, Chen S, et al. Adv. Mater., 2016, 28(7):1369~1374. 

    28. [28]

      Li C Y, Liao Y C. ACS Appl. Mater. Interf., 2016, 8(18):11868~11874. 

    29. [29]

      Martin A, Kim J, Kurniawan J F, et al. ACS Sensors, 2017, 2(12):1860~1868. 

    30. [30]

      Zhang B, Zhang P, Zhang H, et al. Macromol. Rapid Commun., 2017, 38(15):1700110~1700118. 

    31. [31]

      Son D, Kang J, Vardoulis O, et al. Nat. Nanotechnol., 2018, 13(11):1057~1065. 

    32. [32]

      Kagie A, Bishop D K, Burdick J, et al. Electroanalysis, 2008, 20(14):1610~1614. 

    33. [33]

      Kuribara K, Wang H, Uchiyama N, et al. Nat. Commun., 2012, 3:723. 

    34. [34]

      Selvam A P, Muthukumar S, Kamakoti V, et al. Sci. Rep., 2016, 6:23111. 

    35. [35]

      Nakata S, Arie T, Akita S, et al. ACS Sensors, 2017, 2(3):443~448.

    36. [36]

      Li Z, Zhang R, Moon K S, et al. Adv. Funct. Mater., 2013, 23(11):1459~1465. 

    37. [37]

      Yao H B, Ge J, Wang C F, et al. Adv. Mater., 2013, 25(46):6692~6698. 

    38. [38]

      Bandodkar A J, Jeerapan I, You J M, et al. Nano Lett., 2016, 16(1):721~727. 

    39. [39]

      Windmiller J R, Bandodkar A J, Valdes-Ramirez G, et al. Chem. Commun., 2012, 48(54):6794~6796. 

    40. [40]

      Bandodkar A J, Molinnus D, Mirza O, et al. Biosens. Bioelectron., 2014, 54:603~609. 

    41. [41]

      Guinovart T, Bandodkar A J, Windmiller J R, et al. Analyst, 2013, 138(22):7031~7038. 

    42. [42]

      Bandodkar A J, Hung V W, Jia W, et al. Analyst, 2013, 138(1):123~128. 

    43. [43]

      Kim J, de Araujo W R, Samek I A, et al. Electrochem. Commun., 2015, 51:41~45. 

    44. [44]

      Jia W, Bandodkar A J, Valdes-Ramirez G, et al. Anal. Chem., 2013, 85(14):6553~6560. 

    45. [45]

      Kim J, Jeerapan I, Imani S, et al. ACS Sensors, 2016, 1(8):1011~1019. 

    46. [46]

      Bandodkar A J, Jia W, Yardimci C, et al. Anal. Chem., 2015, 87(1):394~398.

    47. [47]

      Soto F, Mishra R K, Chrostowski R, et al. Adv. Mater. Technol., 2017, 2(12):1700210. 

    48. [48]

      Mannoor M S, Tao H, Clayton J D, et al. Nat. Commun., 2012, 3:763. 

    49. [49]

      Guinovart T, Parrilla M, Crespo G A, et al. Analyst, 2013, 138(18):5208~5215. 

    50. [50]

      Coyle S, Lau K T, Moyna N, et al. IEEE Trans. Inf. Technol. Biomed., 2010, 14(2):364~370. 

    51. [51]

      Jost K, Perez C R, McDonough J K, et al. Energy Environ.Sci., 2011, 4(12):5060. 

    52. [52]

      Jost K, Stenger D, Perez C R, et al. Energy Environ. Sci., 2013, 6(9):2698. 

    53. [53]

      Sun J, Huang Y, Fu C, et al. Nano Energy, 2016, 27:230~237. 

    54. [54]

      Zhu J, Tang S, Wu J, et al. Adv. Energy Mater., 2017, 7(2):1601234.

    55. [55]

      Shin S, Kumar R, Roh J W, et al. Sci. Rep., 2017, 7(1):7317. 

    56. [56]

      Bandodkar A J, O'Mahony A M, Ramirez J, et al. Analyst, 2013, 138(18):5288~5295. 

    57. [57]

      De Jong M, Sleegers N, Kim J, et al. Chem. Sci., 2016, 7(3):2364~2370.

    58. [58]

      Mishra R K, Hubble L J, Martin A, et al. ACS Sensors, 2017, 2(4):553~561. 

    59. [59]

      Zhu N, Hao X, Ulstrup J, et al. ACS Catal., 2016, 6(4):2728~2738.

    60. [60]

      Zhu N, Zheng K, Karki K J, et al. Sci. Rep., 2015, 5:9860. 

    61. [61]

      Zhu N, Ulstrup J, Chi Q. J. Mater. Chem. B, 2015, 3(41):8133~8142. 

    62. [62]

      Zhu N, Han S, Gan S, et al. Adv. Funct. Mater., 2013, 23(42):5297~5306. 

    63. [63]

      Hao X, Zhu N, Gschneidtner T, et al. Nat. Commun., 2013, 4:2121. 

    64. [64]

      Jiang Y, Ma J, Lv J, et al. ACS Sensors, 2018, 4(1):152~160.

    65. [65]

      Ma J, Jiang Y, Shen L, et al. Biosens. Bioelectron., 2019, 144:111637. 

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    12. [12]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    13. [13]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    14. [14]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    20. [20]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

Metrics
  • PDF Downloads(28)
  • Abstract views(1169)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return