Citation: CHENG Jun-jie, LI Zhen-rong, ZHAO Liang-fu. Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 93-99. shu

Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX

  • Corresponding author: ZHAO Liang-fu, lfzhao@sxicc.ac.cn
  • Received Date: 30 September 2016
    Revised Date: 25 November 2016

    Fund Project: Strategic Leading Science and Technology of Chinese Academy of Sciences XDA07020200and Leading Science and Technology of Chinese Academy of Sciences XDA07020400

Figures(11)

  • Micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves was prepared by post-synthesis method and characterized by XRD, N2 sorption, Py-FTIR, NH3-TPD, SEM and TEM. With the Hβ/Al-SBA-15 composite as support, Ni-W/Hβ/Al-SBA-15 catalyst was prepared through impregnation and its catalytic performance in the hydrocracking of naphthalene to BTX was investigated. The results verified that the Hβ/Al-SBA-15 composite are provided with both micropores and mesopores. Both Bronsted acid and Lewis acid sites are present on the surface of Hβ/Al-SBA-15 and its acidity is stronger than that of SBA-15. After loading Ni and W, the Ni-W/Hβ/Al-SBA-15 catalyst with moderate acidity and micro-mesoporous structure exhibits high activity in the hydrocracking of naphthalene to BTX; the conversion of naphthalene reaches 96%, with the selectivity of 61.1% to BTX.
  • 加载中
    1. [1]

      DONG W L, JAE Y J, TAE W K, SANG E S, SUNG H B. Selective hydrodealkylation of C9+ aromatics to benzene, toluene and xylenes (BTX) over a Pt/H-ZSM-5 catalyst[J]. J Mol Catal A:Chem, 2015,407:147-151. doi: 10.1016/j.molcata.2015.06.035

    2. [2]

      ELFADLY A, ZEID I, YEHIA F, RABIE A, ABOUALALA M, PARK S. Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica[J]. Int J Biol Macromol, 2016,91:278-93. doi: 10.1016/j.ijbiomac.2016.05.053

    3. [3]

      SULTANA A, FUJITANI T. Conversion of levulinic acid to BTX over different zeolite catalysts[J]. Catal Commun, 2017,88:26-29. doi: 10.1016/j.catcom.2016.09.023

    4. [4]

      ZHU Rong, CHEN Hang-rong, SHI Jian-lin, YAN Dong-sheng. Synthesis and characterization of SBA-15 and SBA-16 templated by block copolymers[J]. J Inorg Mater, 2003,18(4):855-860.  

    5. [5]

      XU Feng, GU Jian-feng, GUAN Nai-jia, YUAN Zhong-yong. Magnesium modified ZSM-5/AlPO4-5 composite zeolite for side-chain alkylation of toluene with methanol[J]. Acta Pet Sin (Pet Process Sect), 2008,346(4):346-349.  

    6. [6]

      XU Xin-long, SHEN Jian. Synthesis and characterization of composite molecular sieves Beta/SBA-15[J]. Fine Chem, 2014,31(5):591-596.  

    7. [7]

      LI Meng, FU Ji-quan. Synthesis of SBA-15 by using the dissolution of ZSM-5 zeolite[J]. J Beijing Univ Chem Technol (Nat Sci Ed), 2010,37(4):88-93.  

    8. [8]

      CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997,97(6):2373-2419. doi: 10.1021/cr960406n

    9. [9]

      WANG Hong-ping, ZHANG Ze-kai, CHEN Yin-fei. In situ synthesis of high-silica β zeolite over cordierite support and its application in catalytic combustion of toluene[J]. Petrkchem Technol, 2011,40(11):1158-1164.  

    10. [10]

      VU X H, URSULA B, MICHAEL H. Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst[J]. J Mater Sci, 2014,49(16):5676-5689. doi: 10.1007/s10853-014-8287-z

    11. [11]

      XU Xin-long, SHEN Jian. Preparation of β/SBA-15 composite molecular sieves and their catalytic performances of the synthesis of tert-butyl phenol[J]. Petrkchem Technol, 2014,43(7):767-773.  

    12. [12]

      KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359(22):710-712.  

    13. [13]

      CUI Q Y, ZHOU Y S, WEI Q, YU G L, ZHU L. Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil[J]. Fuel Process Technol, 2013,106:439-446. doi: 10.1016/j.fuproc.2012.09.010

    14. [14]

      GANJALA V S P, NEELI C K P, PRAMOD C V. Eco-friendly nitration of benzenes over zeolite-β-SBA-15 composite catalyst[J]. Catal Commun, 2014,49:82-86. doi: 10.1016/j.catcom.2014.02.006

    15. [15]

      LIU Bing-si, QIU Jian-guo, YUAN Xing-dong. Study of lumping kinetic model for hydrocracking[J]. Acta Pet Sin (Pet Process Sect), 1994,10(3):10-18.  

  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

Metrics
  • PDF Downloads(0)
  • Abstract views(905)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return