Citation: JIAN Yi-ming, LI Xian, ZHU Xian-qing, ASHIDA Ryuichi, WORASUWANNARAK Nakorn, HU Zhen-zhong, LUO Guang-qian, YAO Hong, ZHONG Mei, LIU Jing-mei, MA Feng-yun, MIURA Kouichi. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 14-22. shu

Interaction between low-rank coal and biomass during degradative solvent extraction

  • Corresponding author: LI Xian, xian_li@hust.edu.cn ZHONG Mei, zhongmei0504@126.com
  • Received Date: 3 September 2018
    Revised Date: 27 November 2018

    Fund Project: the National Natural Science Foundation of China 21776109the Key Project of Joint Fund from National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region U1503293the Double First-Class Research Funding of China-EU Institute for Clean and Renewable Eenergy and the Foundation of State Key Laboratory of Coal Combustion FSKLCCA1602the Double First-Class Research Funding of China-EU Institute for Clean and Renewable Eenergy and the Foundation of State Key Laboratory of Coal Combustion FSKLCCB1805the Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region QN2016BS0152the National Natural Science Foundation of China 21766035The project was supported by the National Natural Science Foundation of China (51661145010, 21776109, U1510119, 21766035), the Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region (QN2016BS0152), the Key Project of Joint Fund from National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region (U1503293), 111 Project (D18022), the Double First-Class Research Funding of China-EU Institute for Clean and Renewable Eenergy and the Foundation of State Key Laboratory of Coal Combustion (FSKLCCB1805, FSKLCCA1602)the National Natural Science Foundation of China U1510119111 Project D18022the National Natural Science Foundation of China 51661145010

Figures(8)

  • A degradative solvent extraction at around 350℃ for low-rank coal or biomass wastes upgrading and fractionation was proposed in our previous work. The extraction yield of low-rank coal is relatively lower than that of biomass. In this work the blends of low-rank coal and biomass were treated by this method at 350℃ to investigate the interaction between them. The results showed that the yields and elemental compositions of the extracts obtained from the blends were slight different to the calculated results, which were calculated by assuming that there was no interaction between the coal and biomass. The slight promotion of yield was judged to be caused by the catalytic action of the minerals in the coal for thermal decomposition of biomass. It was worth to note that the elemental composition, molecular weight distribution, chemical structure, thermal decomposition behavior and thermoplastic behavior of the extracts obtained from low-rank coal, biomass and their blend, were rather similar to each other, independent of the properties of the raw feedstocks. Overall, the interaction between low-rank coal and biomass during the extraction was not significant. On the other hand, the proposed degradative solvent extraction method was fit not only by single low-rank coal and biomass but also by their blends to produce the product having similar physicochemical properties. This implied that an industrial system of degradative solvent extraction can use coal, biomass or their blends as feedstock at the same time without modification or adjustment.
  • 加载中
    1. [1]

      WU F P, LU H, YAN J, WANG R Y, ZHAO Y P, WEI X Y. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. J Fuel Chem Technol, 2018,46(7):769-777. doi: 10.1016/S1872-5813(18)30033-1

    2. [2]

      JING G, ZHENG D. Thermodynamic analysis of low-rank-coal-based oxygen-thermal acetylene manufacturing process system[J]. Ind Eng Chem Res, 2012,51(41):13414-13422. doi: 10.1021/ie301986q

    3. [3]

      LI X, ZHU X Q, XIAO L, ASHIDA R, MIURA K, LUO G Q, YAO H. Degradative solvent extraction of demineralized and ion-exchanged low-rank coals[J]. J Fuel Chem Technol, 2014,42(8):897-904. doi: 10.1016/S1872-5813(14)60038-4

    4. [4]

      HASSAN K, RAJENDER G. Low-grade coals:A review of some prospective upgrading technologies[J]. Energy Fuels, 2009,23(7):3392-3405. doi: 10.1021/ef801140t

    5. [5]

      AYHAN D. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Convers Manage, 2001,42(11):1357-1378. doi: 10.1016/S0196-8904(00)00137-0

    6. [6]

      DAVID J B, EARL W E, JEFFRE M P. An overview of peat research, utilization, and environmental considerations[J]. Int J Coal Geol, 1987,8(1):1-31.  

    7. [7]

      AKGUL O, ZAMBONI A, BEZZO F, SHAH N, PAPAGEORGIOU L G. Optimization-based approaches for bioethanol supply chains[J]. Ind Eng Chem Res, 2011,50(9):4927-4938. doi: 10.1021/ie101392y

    8. [8]

      MIURA K, SHIMADA M, MAE K. Extraction of coal at 300 to 350℃ to produce precursors for chemicals[C]. 15th International Pittsburgh Coal Conference, Pittsburgh, 1998, 30-31. 

    9. [9]

      WANNAPEERA J, LI X, WORASUWANNARAK N, MIURA K, ASHIDA R. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy Fuels, 2012,26:4521-4531. doi: 10.1021/ef3003153

    10. [10]

      LI X, ASHIDA R, MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy Fuels, 2012,26:6897-6904. doi: 10.1021/ef301364p

    11. [11]

      ZHU X Q, XUE Y, LI X, ZHANG Z, SUN W, ASHIDA R, MIURA K, YAO H. Mechanism study of degradative solvent extraction of biomass[J]. Fuel, 2016,165:10-18. doi: 10.1016/j.fuel.2015.10.021

    12. [12]

      LI X, ZHANG Z, ZHANG L, ZHU X Q, HU Z Z, QIAN W X, ASHIDA R, MIURA K, HU H Y, LUO G Q, YAO H. Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent[J]. Fuel Process Technol, 2018,173:48-55. doi: 10.1016/j.fuproc.2018.01.005

    13. [13]

      ZHU X Q, TANG J, LI X, LAN W, XU K, FANG Y, ASHIDA R, MIURA K, LUO G Q, YAO H. Modelling and kinetic study of degradative solvent extraction of biomass wastes[J]. Energy Fuels, 2017,31(5):5097-5103. doi: 10.1021/acs.energyfuels.6b03442

    14. [14]

      OKUDA K, LI X, ASHIDA R, MIURA K. Carbon fiber preparation by low-molecular-weight extracts obtained from low-rank coal or biomass by degradative solvent extraction[C]. 19th Regional Symposium of Chemical Engineering, Bali Indonesia, 2012: 8-9.

    15. [15]

      MIURA K, MIYABAYASHI K, KAWANARI M, ASHIDA R. Enhancement of reduction rate of iron ore by utilizing low grade iron ore and brown coal derived carbonaceous materials[C]. The Iron and Steel Institute of Japan, 2011, 51: 6.

    16. [16]

      ZHU X Q, LI X, XIAO L, ZHANG X, TONG S, WU C, ASHIDA R, LIU W, MIURA K, YAO H. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making[J]. Bioresource Technol, 2016,207:85-91. doi: 10.1016/j.biortech.2016.01.105

    17. [17]

      LI X, PRIYANTO D E, ASHIDA R, MIURA K. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015,29:3127-3133. doi: 10.1021/ef502574b

    18. [18]

      LI X, ASHIDA R, MAKINO M, NISHIDA A, YAO H, MIURA K. Enhancement of gasification reactivity of low-rank coal through high-temperature solvent treatment[J]. Energy Fuels, 2014,28:5690-5695. doi: 10.1021/ef501305s

    19. [19]

      LI J H, ZHOU Q X, MI H Y, LI X, LI H P. Preparation and capacitive properties of graphite-like porous carbon based on coal extracts[J]. J Inorg Mater, 2016,1:39-46.  

    20. [20]

      LI X, ZHU X Q, OKUDA K, ZHANG Z, ASHIDA R, YAO H, MIURA K. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction[J]. New Carbon Mater, 2017,32(1):41-47. doi: 10.1016/S1872-5805(17)60106-9

    21. [21]

      ZHU X Q, TONG S, LI X, GAO Y X, XU Y, DACRES O D, ASHIDA R, MIURA K, LIU W Q, YAO H. Conversion of biomass into high-quality bio-oils by degradative solvent extraction combined with subsequent pyrolysis[J]. Energy Fuels, 2017,31(4):3987-3994. doi: 10.1021/acs.energyfuels.6b03162

    22. [22]

      ZHU X Q, ZHANG Z, ZHOU Q X, CAI T, QIAO E, LI X, YAO H. Upgrading and multistage separation of rice straw by degradative solvent extraction[J]. J Fuel Chem Technol, 2015,43(4):422-428. doi: 10.1016/S1872-5813(15)30010-4

    23. [23]

      LIU F J, WEI X Y, FAN M, ZONG Z M. Separation and structural characterization of the value-added chemicals from mild degradation of lignites:A review[J]. Appl Energy, 2016,170:415-436. doi: 10.1016/j.apenergy.2016.02.131

    24. [24]

      HU M, CHEN Z, WANG S, GUO D, MA C, ZHOU Y, CHEN J, LAGHARI M, FAZAL S, XIAO B, ZHANG B, MA S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Convers Manage, 2016,118:1-11. doi: 10.1016/j.enconman.2016.03.058

    25. [25]

      YANG H, YAN R, CHEN H, ZHENG C, LEE D H, LIANG D T. In-depth investigation of biomass pyrolysis based on three major components:Hemicellulose, cellulose and lignin[J]. Energy Fuels, 2006,20:388-393. doi: 10.1021/ef0580117

    26. [26]

      CHEN B, WEI X Y, ZONG Z M, YANG Z S, QING Y, LIU C. Difference in chemical composition of supercritical methanolysis products between two lignites[J]. Appl Energy, 2011,88:4570-4576. doi: 10.1016/j.apenergy.2011.05.052

    27. [27]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25:2741-2745. doi: 10.1021/ef101734f

    28. [28]

      CARLSON T, TOMPSETT G, CONNER W, HUBER G. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Top Catal, 2009,52:241-252. doi: 10.1007/s11244-008-9160-6

    29. [29]

      MENG A, ZHOU H, QIN L, ZHANG Y, LI Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2013,104:28-37. doi: 10.1016/j.jaap.2013.09.013

    30. [30]

      LI X, OKUDA K, ASHIDA R, MIURA K, LUO G, YAO H. Carbon Fibers Preparation by Biomass or Low-Rank Coal Extracts Obtained by Degradative Solvent Extraction[C]. International Symposium on EcoTopia Science, Nagoya Japan, 2013.

    31. [31]

      TIAN C, LIU Z, ZHANG Y, LI B, CAO W, LU H, DUAN N, ZHANG L, ZHANG T. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake:Effects of operational parameters and relations of products[J]. Bioresource Technol, 2015,184:336-343. doi: 10.1016/j.biortech.2014.10.093

    32. [32]

      LI X, PRIYANTO D E, ASHIDA R, MIURA K. Two-Stage Conversion of Low-Rank Coal and Biomass into Liquid Fuel under Mild Condition[C]. 29th International Pittsburgh Coal Conference, Pittsburgh USA. 2012. 

    33. [33]

      SKODRAS G, GRAMMELIS P, BASINAS P, KAKARAS E, SAKELLAROPOULOS G. Pyrolysis and combustion characteristics of biomass and waste-derived feedstock[J]. Ind Eng Chem Res, 2006,45:3791-3799. doi: 10.1021/ie060107g

    34. [34]

      PIPATMANOMAI S, FUNGTAMMASAN B, BHATTACHARYA S. Characteristics and composition of lignites and boiler ashes and their relation to slagging:The case of Mae Moh PCC boilers[J]. Fuel, 2009,88:116-123. doi: 10.1016/j.fuel.2008.08.007

    35. [35]

      KARAGOZ S, BHASKAR T, MUTO A, SAKATA Y, OSHIKI T, KISHIMOTO T. Low-temperature catalytic hydrothermal treatment of wood biomass:Analysis of liquid products[J]. Chem Eng J, 2005,108:127-137. doi: 10.1016/j.cej.2005.01.007

    36. [36]

      MATSUI T, NISHIHARA A, UEDA C, OHTSUKI M, IKENAGA N, SUZUKI T. Liquefaction of micro-algae with iron catalyst[J]. Fuel, 1997,76:1043-1048. doi: 10.1016/S0016-2361(97)00120-8

    37. [37]

      ELLIOTT D C, BECKMAN D, BRIDGWATER A V, DIEBOLD J P, GEVERT S B, SOLANTAUSTA Y. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy Fuels, 1991,5:399-410. doi: 10.1021/ef00027a008

  • 加载中
    1. [1]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    2. [2]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    5. [5]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    8. [8]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    9. [9]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    10. [10]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    13. [13]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    14. [14]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    15. [15]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    16. [16]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    17. [17]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

Metrics
  • PDF Downloads(5)
  • Abstract views(2047)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return