Citation: LU Hao, DU Jiao-jiao, XIAO Jian, WEI Hao, ZHAO Yun-peng, WEI Xian-yong. Thermal dissolution of Huozhou and Xinghe lignites and the occurrence forms of organic oxygen in them[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 897-904. shu

Thermal dissolution of Huozhou and Xinghe lignites and the occurrence forms of organic oxygen in them

  • Corresponding author: ZHAO Yun-peng, yunpengzhao2009@163.com
  • Received Date: 25 January 2018
    Revised Date: 7 June 2018

    Fund Project: the National Natural Science Foundation of China 21206188National Undergraduate Training Programs for Innovation of China University of Mining and Technology 201610290036Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MKX201502The project was supported by the National Natural Science Foundation of China (21206188), Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education (MKX201502) and National Undergraduate Training Programs for Innovation of China University of Mining and Technology (201610290036)

Figures(10)

  • Huozhou (HZ)and Xinghe (XH) lignites were extracted in turn with petroleum ether, carbon disulfide, methanol, acetone and isometric acetone/carbon disulfide mixed solvent to obtain the extracts (E1-E5) and the extraction residues (ER1-ER5), then ER5 was thermally dissolved at 320℃ using methanol, toluene, isometric methanol/toluene mixed solvent and acetone to gain the soluble portions (SPs). The total yields of extraction for HZ and XH are 7.03% and 7.86%, respectively, in which the yield of E3 is the highest. The SPs yield of extraction residue with isometric methanol/toluene mixed solvent is the highest, and the SPs of ER5, HZ and ER5, XH with isometric methanol/toluene mixed solvent reaches 45.76% and 40.14%, respectively. There exist strong adsorption peaks ascribed to aliphatic C-H in the Fourier transform infrared (FT-IR) spectra of E1-E5, while the intensity of adsorption peaks ascribed to C=C, C=O and O-H in the FT-IR spectra of SPs is obviously higher than that of extracts. The gas chromatography/mass spectrometer (GC/MS) analyses show that the oxygen containing organic compounds (OCOCs) in E1-E5 are dominated with alcohols, ethers and ketones, while it is mainly composed of alcohols, phenols and ketones in the SPs, and the strong polar solvents contribute to dissolving the OCOCs in lignites. The adsorption peaks ascribed to associated O-H, C=O and C-O-C in the FT-IR spectra of extraction residues and thermal dissolution residues are weaker than those of raw coals. The X-ray photoelectron spectroscopy (XPS) analyses indicate that the relative content of oxygen forms in XH and HZ is C-O > C=O > COO-, and the relative content of C-O and COO-in HZ is higher than that in XH.
  • 加载中
    1. [1]

      XIE Ke-chang. Structure and Reactivity of Coal[M]. Beijing:Science Press, 2002, 243-268. 

    2. [2]

      WANG J, LI C, SAKANISHI K, NAKAZATO T, TAO H, TAKANOHASHI T, TAKARADA T, SAITO I. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction[J]. Fuel, 2005,84(12/13):1487-1493.  

    3. [3]

      RAHMAN M, SAMANTA A, GUPTA R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction[J]. Fuel Process Technol, 2013,115(11):88-98.  

    4. [4]

      SIMSEK E H, KARADUMAM A, CALⅡSKAN S, TOGRUL T. The effect of preswelling and/or pretreatment of some Turkish coals on the supercritical fluid extract yield[J]. Fuel, 2002,81(4):503-506. doi: 10.1016/S0016-2361(01)00191-0

    5. [5]

      BRAND S, SUSANTI R F, KIM S K, LEE H S, KIM J, SANG B I. Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction:Influence of physical process parameters[J]. Energy, 2013,59(9):173-182.

    6. [6]

      DU Jiao-jiao, ZHAO Yun-peng, TIAN You-jia, ZHANG Di. Composition and structural characteristics of soluble organic species in Baiyinhua lignite[J]. J Fuel Chem Technol, 2017,45(1):9-14.  

    7. [7]

      OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004,85(8/10):947-967.

    8. [8]

      MATHEWS J P, BURGESS-CLIFFORD C, PAINTER P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015,29(3):1279-1294. doi: 10.1021/ef502548x

    9. [9]

      NIEKERK D V, HALLECK P M, MATHEWS J P. Solvent swelling behavior of permian-aged south african vitrinite-rich and inertinite-rich coals[J]. Fuel, 2010,89(1):19-25. doi: 10.1016/j.fuel.2009.06.028

    10. [10]

      LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol, 2015,136(8):8-16.  

    11. [11]

      HAO P, BAI Z, HOU R, XU J, BAI J, GUO Z, KONG L, LI W. Effect of solvent and atmosphere on product distribution, hydrogen consumption and coal structural change during preheating stage in direct coal liquefaction[J]. Fuel, 2018,211(1):783-788.  

    12. [12]

      DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol, 2015,135(7):20-24.  

    13. [13]

      WANG Z, SHUI H, PAN C, LI L, REN S, LEI Z, KANG S, WEI C, HU J. Structural characterization of the thermal extracts of lignite[J]. Fuel Process Technol, 2014,120(4):8-15.

    14. [14]

      WEI X Y, WANG X H, ZONG Z M. Extraction of organonitrogen compounds from five Chinese coals with methanol[J]. Energy Fuels, 2009,23(10):4848-481. doi: 10.1021/ef900086h

    15. [15]

      SHI K, GUI X, TAO X, LONG J, JI Y. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy Fuels, 2015,29(6):3566-3572. doi: 10.1021/ef502859r

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    7. [7]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    8. [8]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    11. [11]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(5)
  • Abstract views(723)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return