Citation: Lei Ying, Yang Rong, Wang Liqing, Li Lan, Yang Wenyu, Su Xiangxiang, Lu Leilei. The Functionalization of Graphene and Their Applications in the Field of Energy Storage Materials[J]. Chemistry, ;2017, 80(9): 802-808. shu

The Functionalization of Graphene and Their Applications in the Field of Energy Storage Materials

  • Corresponding author: Yang Rong, yangrong@xaut.edu.cn
  • Received Date: 17 January 2017
    Accepted Date: 24 February 2017

Figures(4)

  • Graphene is a two-dimensional material that is compactly packed with sp2 hybridized carbon atoms and is considered as one of the most promising new materials due to its excellent physical and chemical properties. However, because of the irreversible agglomeration tendency of the graphene sheets, the structural properties of the monolayer nanosheets are disappeared easily. Moreover, the surface of the graphene is in an inert state, resulting in weak interaction with other media, making it difficult to disperse uniformly in a polar or non-polar solvent, so the application of graphene is limited. The functionalization of graphene can control its molecular structure, electronic energy level and chemical properties, which can not only inhibit the agglomeration of graphene effectively, but also improve its dispersibility and stability in the solvent, achieving the diversification of graphene-based materials. In this paper, the progress in functionalized of graphene and its composites in application as energy storage materials are reviewed, and the development prospect of functionalized graphene is prospected as well.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      A A Komlev, T L Makarova, E Lahderanta et al. J. Magn. Magn. Mater. 2016, 415:45~50.

    4. [4]

      Y Li, Z Jian, M Lang et al. ACS Appl. Mater. Interf., 2016, 8:17352~17359. 

    5. [5]

      Z Sun, C L Pint, D C Marcano et al. Nat. Commun., 2011, 2:559. 

    6. [6]

      Y Zhao, X G Li, X Zhou et al. Sens. Actuat. B, 2016, 231:324~340.

    7. [7]

      Y Jing, X Yuan, Q Yuan et al. Sci. Rep., 2016, 6:29230.

    8. [8]

      V Georgakilas, M Otyepka, A B Bourlinos et al. Chem. Rev., 2012, 112:6156~6214.

    9. [9]

      A Wang, W Yu, Z Huang et al. Sci. Rep., 2016, 6:23325.

    10. [10]

      X Wang, F Zhang, J Xia et al. J. Electroanal. Chem., 2015, 738:203~208. 

    11. [11]

      J Ye, M T Ong, T W Heo et al. Sci. Rep., 2015, 5:16190. 

    12. [12]

       

    13. [13]

    14. [14]

       

    15. [15]

      E Jokar, S Shahrokhian, A I Zad. Electrochim. Acta, 2014, 147:136~142. 

    16. [16]

       

    17. [17]

       

    18. [18]

       

    19. [19]

    20. [20]

      B Song, J Zhao, M Wang et al. Nano Energy, 2017, 31:183~193.

    21. [21]

      B Song, I C Ji, Y Zhu et al. Chem. Mater., 2016, 28(24):9110~9121.

    22. [22]

      Y Liu, Y Ma, S Guang et al. Carbon, 2015, 83:79~89. 

    23. [23]

      I Cha, E J Lee, H S Park et al. Synth. Met., 2014, 195:162~166. 

    24. [24]

      H Qiu, X Han, F Qiu et al. Appl. Surf. Sci., 2016, 376:261~268. 

    25. [25]

      N Lingappan, D W Kim, X T Cao et al. J. Alloys Compd., 2015, 640:267~274. 

    26. [26]

      Z Xiang, Q Dai, J F Chen et al. Adv. Mater., 2016, 28:6253~6261.

    27. [27]

    28. [28]

      Y Han, M Shen, Y Wu et al. Synth. Met., 2013, 172:21~27. 

    29. [29]

      S Fan, J Yang, T Wei et al. Talanta, 2016, 160:713~720. 

    30. [30]

      J J Shao, S D Wu, S B Zhang et al. Chem. Commun., 2011, 47:5771~5773. 

    31. [31]

      D S Yu, T Kuila, N H Kim et al. Carbon, 2013, 54:310~322. 

    32. [32]

      X Yang, X Zhang, Z Liu et al. J. Phys. Chem. C, 2008, 112:17554~17558.

    33. [33]

      A J Patil, J L Vickery, T B Scott et al. Adv. Mater., 2009, 21:3159~3164. 

    34. [34]

      S Stankovich, D A Dikin, G H Dommett et al. Nature, 2006, 442:282~286.

    35. [35]

      H Jung, K T Park, M N Gueye et al. Int. J. Hydrogen Energy, 2016, 41:5019~5027. 

    36. [36]

      Q Xie, A Zheng, C Xie et al. Microp. Mesop. Mater., 2016, 224:239~244.

    37. [37]

      Y Li, G Louarn, P H Aubert et al. Carbon, 2016, 105:510~520. 

    38. [38]

      A Birrozzi, R Raccichini, F Nobili et al. Electrochim. Acta, 2014, 137:228~234. 

    39. [39]

      P Bandyopadhyay, T Kuila, J Balamurugan et al. Chem. Eng. J., 2017, 308:1174~1184. 

    40. [40]

      S Ruiz Gómez, A Boscá, L Pérez et al. Diamond Relat. Mater., 2015, 57:63~67. 

    41. [41]

      K H Kim, Y S Jun, J A Gerbec et al. Carbon, 2014, 69:543~551. 

    42. [42]

      F Maroni, R Raccichini, A Birrozzi et al. J. Power Sources, 2014, 269:873~882. 

    43. [43]

      Z Yu, M McInnis, J Calderon et al. Nano Energy, 2015, 11:611~620. 

    44. [44]

      D Majumdar, S Kumar, B Hattacharya. Mater. Today:Proceed., 2016, 3:3872~3877.

  • 加载中
    1. [1]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    2. [2]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    12. [12]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    17. [17]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(22)
  • Abstract views(2544)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return