Citation: Xiaoya Gao, Xubing Li, Chenho Tung, Lizhu Wu. Recent Advances in Quantum Dots Based Artificial Photosynthesis[J]. Chemistry, ;2021, 84(1): 10-15. shu

Recent Advances in Quantum Dots Based Artificial Photosynthesis

Figures(3)

  • The facile conversion of H2O or CO2 into chemical fuels (such as H2, CO) via semiconductor quantum dots (QDs) artificial photosynthesis is considered as an effective way to solve the energy and environmental crisis. Due to the unique photophysical and photochemical properties (e.g., excellent light absorption capacity, adjustable energy band structure, multi-exciton generation, abundant surface active sites, etc.), QDs have received much attention in the field of artificial photosynthesis in recent years. Here, we summarize our recent advances in chemical conversions via artificial photosynthesis using semiconductor QDs, and also provide prospects of future studies.
  • 加载中
    1. [1]

      Armaroli N, Balzani V. Angew. Chem. Int. Ed., 2007, 46(1/2): 52~66.

    2. [2]

      Gong J, Li C, Wasielewski M R. Chem. Soc. Rev., 2019, 48(7): 1862~1864. 

    3. [3]

      Antal T K, Krendeleva T E, Rubin A B. Appl. Microbiol. Biotechnol., 2011, 89(1): 3~15. 

    4. [4]

      Whang D R, Apaydin D H. ChemPhotoChem, 2018, 2(3): 148~160. 

    5. [5]

      Liu W, Cao L, Cheng W, et al. Angew. Chem. Int. Ed., 2017, 56(32): 9312~9317. 

    6. [6]

      Roger I, Shipman M A, Symes M D. Nat. Rev. Chem., 2017, 1(1): 0003. 

    7. [7]

       

    8. [8]

      Yan Y, Crisp R W, Gu J, et al. Nat. Energy, 2017, 2(5): 17052. 

    9. [9]

      Robel I, Kuno M, Kamat P V. J. Am. Chem. Soc., 2007, 129(14): 4136~4137. 

    10. [10]

      Kundu S, Patra A. Chem. Rev., 2017, 117(2): 712~757. 

    11. [11]

      Li X B, Tung C H, Wu L Z. Nat. Rev. Chem., 2018, 2(8): 160~173. 

    12. [12]

       

    13. [13]

      Li X B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2019, 58(32): 10804~10811. 

    14. [14]

      Wu H L, Li X B, Tung C H, et al. Adv. Mater., 2019, 31(36): 1900709. 

    15. [15]

      Wang F, Wang W G, Wang X J, et al. Angew. Chem. Int. Ed., 2011, 50(14): 3193~3197. 

    16. [16]

      Jian J X, Liu Q, Li Z J, et al. Nat. Commun., 2013, 4: 2695. 

    17. [17]

      Li C B, Li Z J, Yu S, et al. Energy Environ. Sci., 2013, 6(9): 2597~2602. 

    18. [18]

      Wang F, Liang W J, Jian J X, et al. Angew. Chem. Int. Ed., 2013, 52(31): 8134~8138. 

    19. [19]

      Liang W J, Wang F, Wen M, et al. Chem. Eur. J., 2015, 21(8): 3187~3192. 

    20. [20]

      Jian J X, Ye C, Wang X Z, et al. Energy Environ. Sci., 2016, 9(6): 2083~2089. 

    21. [21]

      Wen M, Li X B, Jian J X, et al. Sci. Rep., 2016, 6: 29851. 

    22. [22]

      Li Z J, Li X B, Wang J J, et al. Energy Environ. Sci., 2013, 6(2): 465~469. 

    23. [23]

      Li Z J, Wang J J, Li X B, et al. Adv. Mater., 2013, 25(45): 6613~6618. 

    24. [24]

      Li Z J, Fan X B, Li X B, et al. J. Am. Chem. Soc., 2014, 136(23): 8261~8268. 

    25. [25]

      Wang J J, Li Z J, Li X B, et al. ChemSusChem, 2014, 7(5): 1468~1475. 

    26. [26]

      Fan X B, Yu S, Zhan F, et al. ChemSusChem, 2017, 10(24): 4833~4838. 

    27. [27]

      Fan X B, Yu S, Wu H L, et al. J. Mater. Chem. A, 2018, 6(34): 16328~16332. 

    28. [28]

      Huang M Y, Li X B, Gao Y J, et al. J. Mater. Chem. A, 2018, 6(14): 6015~6021. 

    29. [29]

      Yu S, Fan X B, Wang X, et al. Nat. Commun., 2018, 9: 4009. 

    30. [30]

      Wang J J, Wang J, Feng K, et al. J. Mater. Chem. A, 2017, 5(20): 9537~9543. 

    31. [31]

      Yu S, Li Z J, Fan X B, et al. ChemSusChem, 2015, 8(4): 642~649. 

    32. [32]

      Li Z J, Fan X B, Li X B, et al. J. Mater. Chem. A, 2017, 5(21): 10365~10373. 

    33. [33]

      Fan X B, Yu S, Wang X, et al. Adv. Mater., 2019, 31(7): 1804872. 

    34. [34]

      Wang Y, Ma Y, Li X B, et al. J. Am. Chem. Soc., 2020, 142(10): 4680~4689. 

    35. [35]

      Gao Y J, Li X B, Wang X Z, et al. Matter, 2020, 3(2): 571~585. 

    36. [36]

      Li X B, Gao Y J, Wang Y, et al. J. Am. Chem. Soc., 2017, 139(13): 4789~4796. 

    37. [37]

      Wang Y, Li X B, Wu H L, et al. ACS Sustain. Chem. Eng., 2019, 7(7): 7286~7293. 

    38. [38]

      Li X B, Gao Y J, Wu H L, et al. Chem. Commun., 2017, 53(41): 5606~5609. 

    39. [39]

      Guo Q, Liang F, Gao X Y, et al. ACS Catal., 2018, 8(7): 5890~5895. 

    40. [40]

      Gao Y J, Li X B, Wu H L, et al. Adv. Funct. Mater., 2018, 28(33): 1801769. 

    41. [41]

      Gao Y J, Yang Y C, Li X B, et al. Chem. Commun., 2018, 54(38): 4858~4861. 

    42. [42]

      Bowker M. Green Chem., 2011, 13(9): 2235~2246. 

    43. [43]

      Wolff C M, Frischmann P D, Schulze M, et al. Nat. Energy, 2018, 3(10): 862~869. 

    44. [44]

      Wang W, Chen J, Li C, et al. Nat. Commun., 2014, 5(1): 4647. 

    45. [45]

      Wu H L, Li X B, Tung C H, et al. Adv. Sci., 2018, 5(4): 1700684. 

    46. [46]

      Liu B, Li X B, Gao Y J, et al. Energy Environ. Sci., 2015, 8(5): 1443~1449. 

    47. [47]

      Wen M, Wu H L, Li X B, et al. Part. Part. Syst. Charact., 2018, 35(1): 1700278~1700282. 

    48. [48]

      Li X B, Liu B, Wen M, et al. Adv. Sci., 2016, 3(4): 1500282. 

    49. [49]

      Li J, Gao X, Liu B, et al. J. Am. Chem. Soc., 2016, 138(12): 3954~3957. 

    50. [50]

      Wu H L, Li X B, Wang Y, et al. J. Mater. Chem. A, 2019, 7(45): 26098~26104. 

    51. [51]

      Li X B, Li Z J, Gao Y J, et al. Angew. Chem. Int. Ed., 2014, 53(8): 2085~2089. 

    52. [52]

      Zhao L M, Meng Q Y, Fan X B, et al. Angew. Chem. Int. Ed., 2017, 56(11): 3020~3024. 

    53. [53]

      Jiang Y, Wang C, Rogers C R, et al. Nat. Chem., 2019, 11(11): 1034~1040. 

    54. [54]

      Zhang Z, Edme K, Lian S, et al. J. Am. Chem. Soc., 2017, 139(12): 4246~4249. 

    55. [55]

      Pal A, Ghosh I, Sapra S, et al. Chem. Mater., 2017, 29(12): 5225~5231. 

    56. [56]

      Caputo J A, Frenette L C, Zhao N, et al. J. Am. Chem. Soc., 2017, 139(12): 4250~4253. 

    57. [57]

      Guo Q, Liang F, Li X B, et al. Chem, 2019, 5(10): 2605~2616. 

    58. [58]

      Hao H, Lang X. ChemCatChem, 2019, 11(5): 1378~1393. 

    59. [59]

      Lu H, Huang Z, Martinez M S, et al. Energy Environ. Sci., 2020, 13(5): 1347~1376. 

    60. [60]

      Huang C, Li X B, Tung C H, et al. Chem. Eur. J., 2018, 24(45): 11530~11534. 

  • 加载中
    1. [1]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    13. [13]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    19. [19]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(29)
  • Abstract views(1502)
  • HTML views(363)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return