Citation: ZHANG Zhong-jian, FANG Qing-yan, MA Lun, LIU Ji-chang, TAN Peng, ZHANG Cheng, CHEN Gang. Effect of O2/CO2 combustion atmosphere on the mineral inter-reaction of blended coal ashes[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 649-658. shu

Effect of O2/CO2 combustion atmosphere on the mineral inter-reaction of blended coal ashes

  • Corresponding author: FANG Qing-yan, qyfang@hust.edu.cn
  • Received Date: 6 February 2018
    Revised Date: 2 May 2018

    Fund Project: National Natural Science Foundation of China 51676076The project was supported by National Natural Science Foundation of China(51676076)

Figures(20)

  • The mineral inter-reaction of blending coals during O2/CO2 combustion was studied. Two coals, Meng coal and Pingqi coal, were blended by certain ratios. The blending coals were burned in a tube furnace with O2/CO2 or O2/N2. Ash fusion temperature test, XRD, TG/DSC and thermodynamic calculation were employed to examine the melting behavior and mineral reactions of blending coal ashes during O2/CO2 and O2/N2 combustion in detail. The results show that:there is no a pronounced difference in the blending coal ash fusion temperature between O2/CO2 and O2/N2 combustion. More CaCO3 produced during O2/CO2 combustion suggests that O2/CO2 atmosphere significantly prevents the decomposition of CaCO3. The changing of atmosphere has an impact on the transformation of Ca-containing minerals, and the reaction between Ca and mullite occurs significantly, which is easier in O2/CO2 combustion to produce more low-melting phase that will aggravate the boiler slagging. When the blending ratio of Meng coal in blends with Pingqi coal is 75% or more, less mullite is present in blending coals, and thus the impact of atmosphere on Ca-mullite reaction is weaker. However, the atmosphere has a more impact on Fe-containing minerals and more Fe-glass phase will be formed during O2/CO2 combustion, which will aggravate the boiler slagging.
  • 加载中
    1. [1]

      LIU Yan-hua, GE Quan-sheng, HE Fan-neng, CHENG Bang-bo. Countermeasures against international pressure of reducing CO2 emissions and analysis on China's potential of CO2 emission reduction[J]. Acta Geog Sin, 2008,63(7):675-682. doi: 10.11821/xb200807001

    2. [2]

      WALL T, LIU Y, SPERO C, ELLIOTT L, KHARE S, RATHNAM R, ZEENATHAL F, MOGHTADERI B, BUHRE B, SHENG C, GUPTA R, YAMADA T, MAKINO K, YU J. An overview on oxyfuel coal combustion-State of the art research and technology development[J]. Chem Eng Res Des, 2009,87(8A):1003-1016.  

    3. [3]

      BUHRE B, ELLIOTT L K, SHENG C D, GUPTA R P, WALL T F. Oxy-fuel combustion technology for coal-fired power generation[J]. Prog Energy Combust Sci, 2005,31(4):283-307. doi: 10.1016/j.pecs.2005.07.001

    4. [4]

      SHENG C, LI Y. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures[J]. Fuel, 2008,87(7):1297-1305. doi: 10.1016/j.fuel.2007.07.023

    5. [5]

      YU D, LIANG Z, ZHANG Z, CHANG W, XU M, HONG Y. Iron transformation and ash fusibility during coal combustion in air and O2/CO2 medium[J]. Energy Fuels, 2012,26(6):3150-3155. doi: 10.1021/ef201786v

    6. [6]

      FRYDA L, SOBRINO C, GLAZER M, BERTRAND C, CIEPLIK M. Study of ash deposition during coal combustion under oxyfuel conditions[J]. Fuel, 2012,92(1):308-317. doi: 10.1016/j.fuel.2011.08.013

    7. [7]

      YU D, MORRIS W J, ERICKSON R, WENDT J O L, FRY A, SENIOR C L. Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace[J]. Int J Greenhouse Gas Control, 2011,5(1):S159-S167.  

    8. [8]

      LI Yi, SHENG Chang-dong. Experimental study on transformation behaviors of iron-bearing minerals during O2/CO2 combustion of pulverized coal[J]. J Fuel Chem Technol, 2008,36(4):415-420.  

    9. [9]

      LIM H, SHAGDARSUREN L, KIM S, HOSHINO A, YAMASHITA T, JEON C. The effect of blending of bituminous and sub-bituminous coals on ash fusibility and deposition formation[J]. J Mech Sci Technol, 2016,30(3):1413-1420. doi: 10.1007/s12206-016-0249-8

    10. [10]

      BRYANT G W, BROWNING G J, EMANUEL H, GUPTA S K, GUPTA R P, LUCAS J A, WALL T F. The fusibility of blended coal ash[J]. Energy Fuels, 2000,14(2):316-325. doi: 10.1021/ef990093+

    11. [11]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.  

    12. [12]

      SUN Qing, ZHANG Tai, HUANG Xiao-hong, LIU Zhao-hui, LIU Chao, CHEN Song-tao, ZHENG Chu-guang. Study of ash fusion behavior of shenhua coale during oxygen enriched combustion[J]. J Combust Sci Technol, 2016,22(2):179-185.  

    13. [13]

      QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999,78(8):963-969. doi: 10.1016/S0016-2361(99)00005-8

    14. [14]

      MCLENNAN A R, BRYANT G W, BAILEY C W, STANMORE B R, WALL T F. Index for iron-based slagging for pulverized coal firing in oxidizing and reducing conditions[J]. Energy Fuels, 2000,14(2):349-354. doi: 10.1021/ef990127d

    15. [15]

      HUANG Fang, ZHANG Li-qi, YI Bao-jun, ZHENG Chu-guang. Thermal and mineral matter transformation behavior of coal ashes in O2/CO2 atmosphere[J]. J China Coal Soc, 2015,40(11):2714-2719.  

    16. [16]

      ZHAO Yong-chun. Mineral transformation and its interaction mechanism with heavy metals during coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008.

    17. [17]

      QUEROL X. The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals[J]. Mineral Mag, 1994,58(390):119-133. doi: 10.1180/minmag

    18. [18]

      DENG C, ZHANG C, TAN P, FANG Q, CHEN G. The melting and transformation characteristics of minerals during co-combustion of coal with different sludges[J]. Energy Fuels, 2015,29(10):6758-6767. doi: 10.1021/acs.energyfuels.5b01201

    19. [19]

      YUAN Hai-ping, LIANG Qin-feng, LIU Hai-feng, GONG Xin. Effects of CaCO3 on the fusion characteristic and viscosity-temperature behaviour of coal ashes[J]. Proc CSEE, 2012,32(20):49-55.  

    20. [20]

      MAYORAL M C, IZQUIERDO M T, ANDRES J M, RUBIO B. Aluminosilicates transformations in combustion followed by DSC[J]. Thermochim Acta, 2001,373(2):173-180. doi: 10.1016/S0040-6031(01)00459-2

    21. [21]

      WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo, CHEN Yu-shuang, CHEN Guo-yan, LU Cheng, HUANG Feng-bao. Ash fusion characteristics and mineral evolvement of blended ash under gasification condition[J]. J Combust Sci Technol, 2010,16(6):508-514.  

    22. [22]

      LAN Ze-quan, CAO Xin-yu, ZHOU Jun-hu, ZHAO Xian-qiao, RAO Su, ZHOU Zhi-jun, LIU Jian-zhong, CHEN Ke-fa. The electron probe analysis of mineral elementary distribution at ash deposition from furnace[J]. Proc CSEE, 2005,25(2):117-122.  

    23. [23]

      TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CHEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015,35(5):1169-1175.  

    24. [24]

      FENG Yun, LI Han-xu, DING Li-ming. Study of huainan coal ash mineral variation under high temperature with XRD[J]. J Anhui Inst Archit Ind:Nat Sci, 2008,16(5):53-57.  

    25. [25]

      QIN Juan, CUI Cong, CUI Xiao-yu, MA Hai-long. Study on formation mechanism of anorthite crystal[J]. J Synthetic Cryst, 2016,45(5):1153-1157.  

    26. [26]

      DU Sheng-lei. Fundamental Study on Transformation behavior of inorganic components during thermochemical conversion of biomassand ash fusion characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2014.

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    12. [12]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(8)
  • Abstract views(1724)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return