Citation: CHEN Hao, HUANG Ya-ji, DONG Lu, CAO Jian-hua, XIA Zhi-peng, QIN Wen-hui. Study on the preparation of magnetic attapulgite and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1392-1400. shu

Study on the preparation of magnetic attapulgite and its mercury removal performance

  • Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
  • Received Date: 25 May 2018
    Revised Date: 5 September 2018

    Fund Project: the National Key Research and Development Program of China 2016YFC0201105National Natural Science Foundation of China 51676040The project was supported by the National Key Research and Development Program of China (2016YFC0201105) and National Natural Science Foundation of China(51676040)

Figures(11)

  • The attapulgite (Atp) widely existed in nature could be modified by magnetism, and a magnetic attapulgite (MAtp) modified by magnetic iron oxide was prepared by deposition-precipitation method. The physical and chemical properties of the magnetic attapulgite were analyzed by BET, VSM, XRD and SEM, and the effects of iron oxide content, reaction temperature and flue gas composition on the mercury removal capacity were studied. The results show that the removal ability for Hg0 is enhanced by the combination of Atp and magnetic materials, and the removal ability of MAtp is gradually improved with the increase in iron oxide content. Moreover, the removal ability of Hg0 is enhanced with the increase of temperature in the test temperature range, and the chemical adsorption of Hg0 is a main factor for MAtp. The addition of O2 and NO is beneficial to the removal of Hg0, but the Hg0 penetration rate does not change significantly with the concentration; while SO2 inhibits the removal of mercury, and the inhibition effect is more obvious with the increase of concentration. However, when NO and SO2 coexist, NO can greatly weaken the inhibition effect of SO2 on mercury removal.
  • 加载中
    1. [1]

      HSI H, TSAI C, KUO T, CHIANG C. Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation[J]. Bioresour Technol, 2011,102(16):7470-7477. doi: 10.1016/j.biortech.2011.05.036

    2. [2]

      LIU Y, ZHANG J, YIN Y. Study on absorption of elemental mercury from flue gas by UV/H2O2:Process parameters and reaction mechanism[J]. Chem Eng J, 2014,249:72-78. doi: 10.1016/j.cej.2014.03.080

    3. [3]

      FUENTE-CUESTA A, DIAZ-SOMOANO M, LOPEZ-ANTON M A, CIEPLIK M, FIERRO J L G. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion[J]. J Environ Manage, 2012,98:23-28. doi: 10.1016/j.jenvman.2011.12.013

    4. [4]

      GAO L, WANG Y, HUANG Q, GUO S. Emission of mercury from six low calorific value coal-fired power plants[J]. Fuel, 2017,210:611-616. doi: 10.1016/j.fuel.2017.09.001

    5. [5]

      GB13223-2011, Pollutant emission standard in thermal power plant[S].

    6. [6]

      YANG Cheng-long, CAI Ming, LIU Tong, CHENG Guang-wen, LI Yang, FU Kang-li. Experimental study on mercury removal performance of magnetic activated carbon[J]. Therm Power Gen, 2016,45(4):54-59. doi: 10.3969/j.issn.1002-3364.2016.04.009

    7. [7]

      ZHANG Bo, ZHONG Zhao-ping, DING Kuan, CAO Yuan-yuan, LIU Zhi-chao. Adsorption removal of mercury by attapulgite sorbent[J]. J Cent South Univ (Sci Technol), 2015,46(2):723-727.  

    8. [8]

      SHI Dong-lei, QIAO Ren-jing, XU Qi. Preparation of acid modified mttapulgite and Its performance of mercury removal[J]. Chin J Synthe Chem, 2015,23(8):720-724.  

    9. [9]

      LIU Fang-fang, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Mercury removal from flue gas by metal oxide-loaded sttapulgite mineral sorbent[J]. J Combust Sci Technol, 2014,20(6):553-557.  

    10. [10]

      DING Feng. Mechanism study of elemental mercury removal from coal combustion flue gases by mineral sorbent[D]. Wuhan: Huazhong University of Science and Technology, 2012.

    11. [11]

      SHI Zhou, LIU Li-shan, YANG Xiu-zhen, DENG Lin. Adsorption of Cu2+ using magnetic chitosan/bentonite composite[J]. Chin J Environ Eng, 2015,9(12):5677-5682. doi: 10.12030/j.cjee.20151205

    12. [12]

      DONG J, XU Z, KUZNICKI S M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents[J]. Environ Sci Technol, 2009,43(9):3266-3271. doi: 10.1021/es803306n

    13. [13]

      LIAN L, CAO X, WU Y, SUN D, LOU D. A green synthesis of magnetic bentonite material and its application for removal of microcystin-LR in water[J]. Appl Surf Sci, 2014,289:245-251. doi: 10.1016/j.apsusc.2013.10.144

    14. [14]

      CHANDRA V, PARKJ , CHUN Y, LEE J W, HWANG I, KIM K S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010,4(7):3979-3986. doi: 10.1021/nn1008897

    15. [15]

      ZHANG Qiao-li, CHEN Xu, YUAN Biao. Preparation and characteristics of iron oxide magnetic/activated carbon composite adsorbents[J]. J Tianjin Univ, 2005,38(4):361-364. doi: 10.3969/j.issn.0493-2137.2005.04.017

    16. [16]

      KONG Fan-hai, QIU Jian-rong, LIU Hao, ZENG Han-cai, XING Wen-ting, ZHAO Ran. Experimental study on elemental mercury by nano-ferric oxide[J]. J Eng Thermophys, 2010,31(7):1227-1230.  

    17. [17]

      GALBREATH K C, ZYGARLICKE C J, TIBBETTS J E, SCHULZ R L, DUNHAM G E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol, 2005,86(4):429-448. doi: 10.1016/j.fuproc.2004.03.003

    18. [18]

      DUNHAM G E, DEWALL R A, SENIOR C L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J]. Fuel Process Technol, 2003,82(2/3):197-213.  

    19. [19]

      DONG J, XU Z, KUZNICKI S M. Magnetic multi-functional nano composites for environmental applications[J]. Adv Funct Mater, 2009,19(8):1268-1275. doi: 10.1002/adfm.v19:8

    20. [20]

      YANG S, GUO Y, YAN N, WU D, HE H, QU Z, JIA J. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel:Effect of chemical heterogeneity[J]. Ind Eng Chem Res, 2011,50(16):9650-9656. doi: 10.1021/ie2009873

    21. [21]

      YANG S, YAN N, GUO Y, WU D, HE H, QU Z. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-σO4[J]. Environ Sci Technol, 2011,45(4):1540-1546. doi: 10.1021/es103391w

    22. [22]

      LIAO Y, XIONG S, DANG H, XIAO X, YANG S. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel[J]. J Hazard Mater, 2015,299:740-746. doi: 10.1016/j.jhazmat.2015.07.083

    23. [23]

      SUN Qing-ke, HUANG Ya-ji, WANG Liang, GUAN Zheng-wen, LI Mu, ZHOU Jun, WANG Ye. Experimental study on mercury removal efficiencies of magnetic Fe304-Ag composite nanoparticles[J]. Chem Ind Eng Prog, 2017,36(3):1101-1106.  

    24. [24]

      DONG L, XIE J, FAN G, HUANG Y, ZHOU J, SUN Q, WANG L, GUAN Z, JIANG D, WANG Y. Experimental and theoretical analysis of element mercury adsorption on Fe3O4/Ag composites[J]. Korean J Chem Eng, 2017,34(11):2861-2869. doi: 10.1007/s11814-017-0177-z

    25. [25]

      ZHANG An-chao, ZHI Guang-hui, ZHANG Zhi-hui, SUN Lu-shi, LIU Zhi-chao, XIANG Jun. Influence of calcination temperature on the structure and activity of MnOx-CoOy/TiO2 adsorbent for Hg0 removal[J]. Proc CSEE, 2015,35(15):3865-3871.  

    26. [26]

      LÜ Dong-qin, ZHOU Shi-xue, ZHANG Tong-huan, ZHANG Guang-wei. Effect of purification and modification on the adsorption performance of attapulgite[J]. Guangdong Chem Ind, 2010,37(4):59-60. doi: 10.3969/j.issn.1007-1865.2010.04.028

    27. [27]

      CUI Xia, MA Li-ping, ZHANG Hang, MAO Ning, XIE Long-gui. Effect of temperature on removing mercury vapor with modified mineral adsorbent[J]. Chin J Environ Eng, 2012,6(12):4596-4602.  

    28. [28]

      WANG Peng-ying. Experimental and mechanism study of elemental mercury oxidation in flue gas over aluminum-based SCR catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2014.

    29. [29]

      ZHU Y, ZHOU J, CAI X, CEN K. Effect of various flue gas compositions on mercury speciation transformation during coal combustion[J]. J Zhejiang Univ Eng Sci, 2007,41(2):356-360.  

    30. [30]

      LUO Jin-jing, ZHANG Long-dong, HUANG Hua-wei, ZHANG Jie-ru. Effects of flue gas components and fly ash on mercury oxidation[J]. J Univ Sci Technol Beijing, 2011,33(6):771-776.  

    31. [31]

      DRANGA B, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Catalysts, 2012,2(1):139-170. doi: 10.3390/catal2010139

    32. [32]

      TONG Li. Removal of Hg0 from coal-fired flue gas by modified activated carbon[D]. Beijing: Institute Process Engineering, Chinese Academy of Sciences, 2015.

    33. [33]

      ZHANG A, ZHENG W, SONG J, HU A, LIU Z, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014,236:29-38. doi: 10.1016/j.cej.2013.09.060

    34. [34]

      GAO Hong-liang, ZHOU Jin-song, LUO Zhong-yang, WU Xu-jie, HU Chang-xing, NI Ming-jiang, CEN Ke-fa. Effect of NO the speciation of mercury in coalfired flue gases[J]. J Eng Thermophys, 2004,25(6):1057-1060. doi: 10.3321/j.issn:0253-231X.2004.06.049

    35. [35]

      ZHENG Wen-wen. The preparation and performance of Mn and Co metal oxide catalyst for elemental mercury removal from SFG[J]. Jiaozuo:Henan Polytechnic University, 2014.  

    36. [36]

      MEI Z, SHEN Z, ZHAO Q, WANG W, ZHANG Y. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. J Hazard Mater, 2008,152(2):721-729. doi: 10.1016/j.jhazmat.2007.07.038

    37. [37]

      PRESTO A A, GRANITE E J. Impact of sulfur oxides on mercury capture by activated carbon[J]. Environ Sci Technol, 2007,41(18):6579-6584. doi: 10.1021/es0708316

    38. [38]

      YANG Jian-ping. Regenerable Magnetospheres Sorbent for Mercury Removal from Coal Combustion Flue Gas and The Reaction Mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2017.

    39. [39]

      HUANG Y, GAO D, TONG Z, ZHANG J, LUO H. Oxidation of NO over cobalt oxide supported on mesoporous silica[J]. J Nat Gas Chem, 2009,18(4):421-428. doi: 10.1016/S1003-9953(08)60135-8

    40. [40]

      KONG Fan-hai, QIU Jian-rong, LIU Hao, ZHAO Ran, ZENG Han-cai. Effect of NO/SO2 on elemental mercury adsorption by Nano-Fe203[J]. Proc CSEE, 2010,30(35):43-48.  

    41. [41]

      QIANG T, ZHIGANG Z, WENPEI Z, ZIDONG C. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel, 2005,84(4):461-465. doi: 10.1016/j.fuel.2004.03.010

    42. [42]

      GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008,73(3/4):359-370.  

    43. [43]

      MENG Su-li, DUAN Yu-feng, HUANG Zhi-jun, WANG Yun-jun, YANG Li-guo. Effect of flue gas components on mercury adsorption by coal-fired fly ash[J]. Proc CSEE, 2009,29(20):66-73. doi: 10.3321/j.issn:0258-8013.2009.20.012

    44. [44]

      LI H, WU C, LI Y, ZHANG J. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011,45(17):7394-7400. doi: 10.1021/es2007808

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    5. [5]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    6. [6]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    7. [7]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    13. [13]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(9)
  • Abstract views(1076)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return