Citation: HOU Feng-xiao, JIN Jing, WANG Yong-zhen, ZHAI Zhong-yuan, LI Huan-long. Reaction mechanism of hydrocyanic acid with calcium oxide in sludge pyrolysis: A density functional theory study[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 123-128. shu

Reaction mechanism of hydrocyanic acid with calcium oxide in sludge pyrolysis: A density functional theory study

  • Corresponding author: JIN Jing, alicejin001@163.com
  • Received Date: 9 October 2016
    Revised Date: 1 December 2016

    Fund Project: Key Project in Fundamental Research of Science and Technology Commission of Shanghai Municipality 14JC1404800

Figures(2)

  • The reaction mechanism of CaO with HCN during low temperature sludge pyrolysis was investigated by density function theory. The geometric optimization and frequency calculations of reactants, products, intermediates and transition state in the reaction pathway were performed at B3LYP/6-311++(3df, 2p) level; single point energy calculation was performed at CCSD (T)/cc-pVQZ level and the total energy was corrected by zero-point energy at B3LYP/6-311++(3df, 2p) level. The results indicate that largest energy barrier (310.33 kJ/mol) appears in proton transition process after 2 HCN molecules are adsorbed on CaO. Arrhenius equation for each step was fitted by classical transition state theory and the reaction rate was calculated at 3 typical temperatures. The results suggest that proton transition is the rate-determining step; moreover, the promoting effect of CaO on HCN is enhanced with the increase of temperature.
  • 加载中
    1. [1]

      KIM Y, PARKER W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresour Technol, 2008,99(5):1409-1416. doi: 10.1016/j.biortech.2007.01.056

    2. [2]

      HANSSON K M, SAMUELSSON J, TULLIN C, AMANG L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005

    3. [3]

      GUO Ming-shan, JIN Jing, LIN Yu-yu, WANG Yong-zhen, HOU Feng-xiao. Transformation mechanism of nitrogen of municipal sewage sludge in the slow pyrolysis process[J]. Chem Ind Eng Prog, 2016,35(1):302-307.  

    4. [4]

      ZHANG Jun. Nitrogen conversion and control of nitrogen-containing compounds during microwave pyrolysis of sewage sludge[D]. Harbin:Harbin Institute of Technology, 2013. 

    5. [5]

      JOUNI P, HÄMÄLÄINEN , MARTTI J A. Effect of fuel composition on the conversion of volatile solid fueI-N to N2O and NO[J]. Fuel, 1994,74(12):1922-1924.  

    6. [6]

      SHEN Hong-hao, JIN Jing, LIN Yu-yu, GUO Ming-shan, HOU Feng-xiao, LI Shang. Influence of CaO on soybean protein pyrolysis characteristics and NH3 and other nitrogenous compounds release[J]. Chem Ind Eng Prog, 2016,35(7):2263-2267.

    7. [7]

      WEI Li-hong, JIANG Xiu-min, YANG Tian-hua, LI Yan-ji, WANG Lei. Influence of mineral matter on nitrogen conversion in coal during combustion[J]. Acta Energ Sin, 2006,26(11):1780-1784.  

    8. [8]

      WU Z, SUGIMOTO Y, KAWASHIMA H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification[J]. Fuel, 2003,82(s15-17):2057-2064.  

    9. [9]

      LIU X. Effects of minerals on the release of nitrogen species from anthracite[J]. Energ Source Part A, 2007,29(4):313-327. doi: 10.1080/009083190948603

    10. [10]

      CUI Yan-ni, ZHANG Jun, TIAN Yu. The effect of mineral matter on the formation of NOx precursors during microwave-induced pyrolysis of sewdge sludge[J]. Environ Eng, 2012(S2):481-485.  

    11. [11]

      TAN H, WANG X, WANG C, XU T. Characteristics of HCN removal using CaO at high temperatures[J]. Energy Fuels, 2009,23(1):1545-1550.  

    12. [12]

      CAO J P, XIN H, ZHAO X Y, WEI X Y, TAKARADA T. Nitrogen transformation during gasification of livestock compost over transition metal and Ca-based catalysts[J]. Fuel, 2015,140(3):477-483.  

    13. [13]

      ZHOU Hao-sheng, LU Ji-dong, ZHOU Hu. Reduction of N2O over CaO under fluidized bed combustion of coal[J]. J Southeast Univ:Nat Sci Ed, 2004,30(2):111-115.

    14. [14]

      GUO X, WANG L, ZHANG L, LI S, HAO J. Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam[J]. J Anal Appl Pyrolysis, 2014,108(7):143-150.  

    15. [15]

      LIU H, ZHANG Q, HU H, LIU P, HU X, LI A, YAO H. Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis[J]. Proc Combust Inst, 2014,35(3):135-139.  

    16. [16]

      ZHANG Q, LIU H, LU G, YI L, HU H, CHI H, YAO H. Mechanism of conditioner CaO on NOx, precursors evolution during sludge steam gasification[J]. Proc Combust Inst, 2016, in press.  

    17. [17]

      YUAN Shuai, LI Jun, ZHOU Zhi-jie, WANG Fu-chen. Mechanisms of HCN and NH3 formation during rapid pyrolysis of pyridinic nitrogen containing substances[J]. J Fuel Chem Technol, 2011,39(6):413-418.  

    18. [18]

      YUAN Shuai, LI Jun, CHEN Xue-li, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Study on NH3 and HCN formation mechanisms during rapid pyrolysis of pyrrolic nitrogen[J]. J Fuel Chem Technol, 2011,39(11):801-805.  

    19. [19]

      LIU Hai-ming, ZHANG Jun-yin, ZHANG Chu-guang, WANG Chun-mei. Quantum chemical study on the pyrolysis of pyridinic nitreogen functionalities in coal[J]. Coal Convers, 2004,27(2):19-22.  

    20. [20]

      ZHU Heng-yi, SUN Bao-min, XIN Jing, YIN Shu-ping, XIAO Hai-ping. Comparision of two pathways on no desorption reaction by the edge of nitrogen-containing char[J]. Coal Convers, 2015,38(1):48-52.  

    21. [21]

      ZHANG X, ZHOU Z, ZHOU J, LIU J, CEN K. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012,184(4):445-455. doi: 10.1080/00102202.2011.648031

    22. [22]

      WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-Char heterogeneous reaction[J]. J Combust Sci Technol, 2009,15(6):505-510.  

    23. [23]

      LIU L, JIN J, LIN Y, HOU F, LI S. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016,106:212-220. doi: 10.1016/j.energy.2016.02.148

    24. [24]

      BOZOVIC A D, ZHAO X, BOHME D K. Exploration of the catalytic oxidation of ethylene with N2O mediated by atomic alkaline-earth metal cations[J]. Int J Mass Spectrom, 2006,254(3):155-162. doi: 10.1016/j.ijms.2006.05.002

    25. [25]

      VALENTIN C D, FIGINI A, PACCHIONI G. Adsorption of NO and NO2 on terrace and step sites and on oxygen vacancies of the CaO (100) surface[J]. Surf Sci, 2004,556(s2/3):145-158.  

    26. [26]

      PISKORZ W, ZASADA F, STELMACHOWSKI P, KOTARBA A, SOJKA Z. DFT modeling of reaction mechanism and ab Initio microkinetics of catalytic N2O decomposition over alkaline earth oxides:from molecular orbital picture account to simulation of transient and stationary rate profiles[J]. J Phys Chem C, 2013,117(36):18488-18501. doi: 10.1021/jp405459g

    27. [27]

      NOWIAK G, SKURSKI P, ANUSIEWICZ L. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity[J]. J Mol Model, 2016,22(4):1-8.  

    28. [28]

      BUTLER G B, BERLIN K D. Fundamentals of Organic Chemistry:Theory and Application[M]. NewYork:Ronald Press Co, 1972.

    29. [29]

      YANG X, ZHAO B, ZHUO Y, GAO Y, CHEN C, XU X. DRIFTS study of ammonia activation over CaO and sulfated CaO for NO reduction by NH3[J]. Environ Sci Technol, 2011,45(3):1147-51. doi: 10.1021/es103075p

    30. [30]

      FU S L, SONG Q, TANG J S, YAO Q. Effect of CaO on the selective non-catalytic reduction deNOx, process:Experimental and kinetic study[J]. Chem Eng J, 2014,249(4):252-259.  

    31. [31]

      FU Cai-xia, SHEN Wen-xia, YAO Tian-yang, HOU Wen-hua. Physical Chemistry[M]. Beijing:Higher Education Press, 2006.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    13. [13]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

Metrics
  • PDF Downloads(1)
  • Abstract views(884)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return