Citation: CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 263-272. shu

Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 15 September 2015
    Revised Date: 9 December 2015

    Fund Project: The project was supported by the National Natural Science Foundation of China 21476247Shanxi Province Science Foundation for Youths 2015021055and Joint Foundation of Natural Science Foundation of China and Shanxi Province U1510201The project was supported by the National Natural Science Foundation of China 21406254

Figures(7)

  • In order to reveal the mechanism of Na2O influence on ash fusion temperatures (AFTs), effect of Na2O on mineral transformation of two coal ashes with different SiO2+Al2O3 levels were investigated by XRD and FT-IR under reducing atmosphere at high temperature. Thermodynamic software package FactSage was used to calculate the ΔG of reactions between minerals to reveal the mechanism of Na2O influence on mineral transformation. It is found that the effect of Na2O on mineral compositions depends on SiO2+Al2O3 levels of coal ash. For ash with 82.89% SiO2+Al2O3 while Na2O content is 5%-20%, albite and nepheline are formed, leading to a decrease of AFTs. However, only nepheline is formed when Na2O content is higher than 20%. For ash with 47.85% SiO2+Al2O3, when Na2O content is less than 10%, no Na-containing mineral is observed. When Na2O content is higher than 10%, Na-containing minerals such as combeite, lazurite and sodium aluminium oxide are formed, resulting in a decrease of AFTs. Furthermore, FactSage results reveal that Na-containing mineral is easily formed at high temperature due to low ΔG of the reactions.
  • 加载中
    1. [1]

      YAN Lu-guang, XIA Xun-cheng, LÜ Shao-qin, WU Jia-chun, LIN Min, HUANG Chang-gang. Great promotion of development of large scale integrative energy base in Xinjiang[J]. Adv Technol Electr Eng Energy, 2011,30(1):1-7.  

    2. [2]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LÜ Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838.  

    3. [3]

      WANG Yan-liu, ZHANG Xiao-hui. Effect of ash fusion temperatures on coals for gasification[J]. Coal Qual Technol, 2009,4:55-58.  

    4. [4]

      SONG Han-jiang. The study of comprehensive utilization of coal from Xinjiang Zhundong coalfield[J]. West-China Explor Eng, 2008,20(9):149-151.  

    5. [5]

      FU Zi-wen, WANG Chang-an, CHE De-fu, WENG Qing-song. Experimental study on the effect of ashing temperature on physicochemical properties of Zhundong coal ashes[J]. J Eng Thermophys, 2014,35(3):609-613.  

    6. [6]

      CHENG Yi, LI Han-xu, WU Cheng-li. Effect of fluxes on ash fusion characteristics of huainan coal[J]. Coal Technol, 2005,24(12):90-91.  

    7. [7]

      MAO Jun, XU Ming-hou, LI Fan. The effect of alkali mineral matter on the ash melting characteristic[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2003,31(4):59-62.  

    8. [8]

      YAO Run-sheng, LI Xiao-hong, ZUO Yong-fei, LI Fan. Effect of sodium based flux on the ash melting characteristics temperature of Lingshi coal[J]. J China Coal Soc, 2011,36(6):1027-1031.  

    9. [9]

      GAO Feng, MA Yong-jing. Study on the effect of Mg2+and Na+ on the fusibility of coal ash with high ash fusion point[J]. J Fuel Chem Technol, 2012,40(10):1161-1166.  

    10. [10]

      SONG W, TANG L, ZHU X, WU Y, ZHU Z, SHUNTAROU K. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009,23(4):1990-1997. doi: 10.1021/ef800974d

    11. [11]

      VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,45(1):27-55. doi: 10.1016/0378-3820(95)00032-3

    12. [12]

      BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4/5):583-591.  

    13. [13]

      WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. J China Coal Soc, 2010,35(6):1015-1020.  

    14. [14]

      JING N, WANG Q, CHENG L, LUO Z, CEN K, ZHANG D. Effect of temperature and pressure on the mineralogical and fusion characteristics of Jincheng coal ash in simulated combustion and gasification environments[J]. Fuel, 2013,104:647-655. doi: 10.1016/j.fuel.2012.05.040

    15. [15]

      LIAO Min, GUO Qing-hua, LIANG Qin-feng, YUAN Hai-ping, NI Jian-ping, YU Guang-suo. Phase transformation of coal ash at high temperature under gasification conditions and its influence on viscosity[J]. Proc CSEE, 2010,30(17):45-50.  

    16. [16]

      GREIG J W, BARTH T F W. The system, Na2O·Al2O3·2SiO2 (nepheline, carnegieite)-Na2O·Al2O3·6SiO2 (albite)[J]. Am J Sci, 1938,35:93-112.

    17. [17]

      WEN Lu, LIANG Wan-xue, ZHANG Zheng-gang, HUANG Jin-chu. The Infrared Spectroscopy of Minerals[M]. Chongqing: Chongqing University Press, 1988.

    18. [18]

      VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci, 2001,27(3):237-429. doi: 10.1016/S0360-1285(00)00023-X

    19. [19]

      MA Z, BAI J, LI W, BAI Z, KONG L. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 1: Mineral transformation in char[J]. Energy Fuels, 2013,27(8):4545-4554. doi: 10.1021/ef4010626

    20. [20]

      LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. J Huazhong Univ Sci Technol, 1996,24(10):96-99.  

    21. [21]

      MASTELARO V R, ZANOTTO E D. Relationship between short range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses[J]. J Non-Cryst Solids, 2000,262(1/3):191-199.

    22. [22]

      MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2012,40(3):279-285.  

    23. [23]

      WANG H, QIU P, SHI X, ZHANG J, CBEN Y, WU S. Effect of key minerals on the ash melting behavior in a reducing atmosphere[J]. Energy Fuels, 2011,25(8):3446-3455. doi: 10.1021/ef200542n

  • 加载中
    1. [1]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    8. [8]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    9. [9]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    12. [12]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    13. [13]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    18. [18]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(1)
  • Abstract views(911)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return