Citation: LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 290-297. shu

Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification

  • Corresponding author: LANG Lin, langlin@ms.giec.ac.cn
  • Received Date: 14 November 2017
    Revised Date: 18 January 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51676192, 51661145022) and the Science and Technology Program of Guangzhou (201707010237)the Science and Technology Program of Guangzhou 201707010237the National Natural Science Foundation of China 51661145022the National Natural Science Foundation of China 51676192

Figures(6)

  • Isothermal pyrolytic characteristics of PBG at 400℃ under different reaction atmospheres in a horizontal tubular quartz reactor were investigated and compared. Meanwhile, chemical structures of PBG and its pyrolysis solid products were also analyzed with the help of XPS and 13C NMR methods. The results indicate that tar yields derived from PBG pyrolysis are 50.71 and 37.45 mg/g under biomass air gasification (BAG) and N2 atmospheres, respectively, while 11.96 mg/g under BAG+2%O2 atmosphere, which indicates that the presence of oxygen can inhibit the production of tar. Furthermore, the dominant reaction is characterized as the polycondensed aromatization involving dehydrogenation and deoxygenation in PBG under BAG atmosphere, tending to the formation of heavy organic compounds such as tar. While, surface oxygen-containing organic functional groups can be generated via the oxidation reaction between some surface functional groups of PBG and O2 in PBG under BAG+2%O2 atmosphere, inhibiting the aromatization of aromatic clusters and the formation of heavy organic compounds such as tar to some extent. Thus, the introduction of a limited amount of oxygen may be helpful for solving the pipe blockage during hot gas filtration of the raw BAG gas.
  • 加载中
    1. [1]

      HEIDENREICH S. Hot gas filtration-A review[J]. Fuel, 2013,104:83-94. doi: 10.1016/j.fuel.2012.07.059

    2. [2]

      WOOLCOCK P J, BROWN R C. A review of cleaning technologies for biomass-derived syngas[J]. Biomass Bioenerg, 2013,52:54-84. doi: 10.1016/j.biombioe.2013.02.036

    3. [3]

      SHARMA S D, DOLAN M, ILYUSHECHKIN A Y, MCLENNAN K G, NGUYEN T, CHASE D. Recent developments in dry hot syngas cleaning processes[J]. Fuel, 2010,89:817-826. doi: 10.1016/j.fuel.2009.05.026

    4. [4]

      ALVIN M A. Impact of char and ash fines on porous ceramic filter life[J]. Fuel Process Technol, 1998,56:143-168. doi: 10.1016/S0378-3820(97)00088-X

    5. [5]

      SIMEONE E, SIEDLECKI M, NACKEN M, HEIDENREICH S, DE JONG W. High temperature gas filtration with ceramic candles and ashes characterisation during steam-oxygen blown gasification of biomass[J]. Fuel, 2013,108:99-111. doi: 10.1016/j.fuel.2011.10.030

    6. [6]

      KAMIYA H, SEKIYA Y, HORIO M. Thermal stress fracture of rigid ceramic filter due to char combustion in collected dust layer on filter surface[J]. Powder Technol, 2011,115(2):139-145.  

    7. [7]

      HEMMER G, HOFF D, KASPER G. Thermo-analysis of fly ash and other particulate materials for predicting stable filtration of hot gases[J]. Adv Powder Technol, 2003,14(6):631-655. doi: 10.1163/15685520360731954

    8. [8]

      HURLEY J P, MUKHERJEE B. Assessment of filter dust characteristics that cause filter failure during hot-gas filtration[J]. Energ Fuel, 2006,20(4):1629-1638. doi: 10.1021/ef050303k

    9. [9]

      GONG Zhi, SU De-ren, ZENG Zhong-hua, WEI Zhi-guo, PAN Xian-qi. Experimental study on cordierite ceramic filter for biomass fuel gas filtration[J]. J Ceram, 2011,32(3):347-352.  

    10. [10]

      LANG Lin, XIE Jian-jun, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Hot gas filtration performance of modified ceramic candles for biomass gasfication[J]. J Eng Thermophys, 2014,35(8):1665-1668.  

    11. [11]

      YIN Xiu-li, WU Jin-hu, DING Ming-yue, LANG Lin, XIE Jian-jun, WANG Shu-rong. The key technology and demonstration unit for 1000-ton synthol liquid fuel by biomass gasification[R]. 455860816-3011BAD22B06/01, 2011.

    12. [12]

      LANG Lin, YIN Xiu-li, WU Chuang-zhi, PAN Xian-qi. An integrated high-temperature dust/tar purification technologyfor the crude biomass fuel gas[P]. Chinese Patent, ZL201310590071. 7, Mar. 5th, 2014.

    13. [13]

      WU Chuang-zhi, YING Hao, LI Zong-li, YIN Xiu-li, PAN Xian-qi, ZHOU Yi. The integrated systems for biomass gasification, power generation and CHP[R]. 455860816-2012BAA09B03/01, 2012.

    14. [14]

      JIANG Jun-fei. The partial oxidation of the particulate matters in product gas[D]. Beijing: Chinese Academy of Sciences, 2016.

    15. [15]

      CHEN Liang. Experimental study on biomass pyrolysis characteristics in the presence of oxygen[D]. Shanghai: Shanghai Jiao Tong University, 2011. 

    16. [16]

      NISHIMIYA K, HATA T, IMAMURA Y, ISHIHARA S. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy[J]. J Wood Sci, 1998,44(1):56-61. doi: 10.1007/BF00521875

    17. [17]

      Zhang Na. Study on the transformation characteristics of nitrogen during pyrolysis of sewage sludge[D]. Shenyang: Shenyang Aerospace University, 2012. 

    18. [18]

      SULIMAN W, HARSH A J B, ABU-LAIL N I, FORTUNA A, DALLMEYER I, GARCIA-PEREZ M. Modification of biochar surface by air oxidation:Role of pyrolysis temperature[J]. Biomass Bioenerg, 2016,85:1-11. doi: 10.1016/j.biombioe.2015.11.030

    19. [19]

      CHENG C H, LEHMANN J, THIES J E, BURTON S D, ENGELHRAD M H. Oxidation of black carbon by biotic and abiotic processes[J]. Org Geochem, 2006,37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022

    20. [20]

      BOEHM H P. Surface oxides on carbon and their analysis:a critical assessment[J]. Carbon, 2002,40(2):145-149. doi: 10.1016/S0008-6223(01)00165-8

    21. [21]

      WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol, 2013,41(12):1422-1426.  

    22. [22]

      SONG Yu, ZHU Yan-ming, LI Wu. Structure evolution of oxygen functional groupsin Dongsheng long flame coal by 13C-NMR and FT-IR[J]. J Fuel Chem Technol, 2015,43(5):519-529.  

    23. [23]

      BREWER C E, SCHMIDT-ROHR K, SATRIO J A, BROWN R C. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environ Prog Sustain, 2009,28(3):386-396. doi: 10.1002/ep.v28:3

    24. [24]

      SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of Argonne premium coals[J]. Energ Fuel, 1989,3(2):187-193. doi: 10.1021/ef00014a012

    25. [25]

      THOMAS S, LEDESMA E B, WORNAT M J. The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fule-rich oxidation conditions[J]. Fuel, 2007,86(16):2581-2595. doi: 10.1016/j.fuel.2007.02.003

    26. [26]

      THOMAS S, WORNAT M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol[J]. Fuel, 2008,87(6):768-781. doi: 10.1016/j.fuel.2007.07.016

  • 加载中
    1. [1]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    2. [2]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    7. [7]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    14. [14]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(7)
  • Abstract views(2006)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return