Citation: LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 290-297. shu

Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification

  • Corresponding author: LANG Lin, langlin@ms.giec.ac.cn
  • Received Date: 14 November 2017
    Revised Date: 18 January 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51676192, 51661145022) and the Science and Technology Program of Guangzhou (201707010237)the Science and Technology Program of Guangzhou 201707010237the National Natural Science Foundation of China 51661145022the National Natural Science Foundation of China 51676192

Figures(6)

  • Isothermal pyrolytic characteristics of PBG at 400℃ under different reaction atmospheres in a horizontal tubular quartz reactor were investigated and compared. Meanwhile, chemical structures of PBG and its pyrolysis solid products were also analyzed with the help of XPS and 13C NMR methods. The results indicate that tar yields derived from PBG pyrolysis are 50.71 and 37.45 mg/g under biomass air gasification (BAG) and N2 atmospheres, respectively, while 11.96 mg/g under BAG+2%O2 atmosphere, which indicates that the presence of oxygen can inhibit the production of tar. Furthermore, the dominant reaction is characterized as the polycondensed aromatization involving dehydrogenation and deoxygenation in PBG under BAG atmosphere, tending to the formation of heavy organic compounds such as tar. While, surface oxygen-containing organic functional groups can be generated via the oxidation reaction between some surface functional groups of PBG and O2 in PBG under BAG+2%O2 atmosphere, inhibiting the aromatization of aromatic clusters and the formation of heavy organic compounds such as tar to some extent. Thus, the introduction of a limited amount of oxygen may be helpful for solving the pipe blockage during hot gas filtration of the raw BAG gas.
  • 加载中
    1. [1]

      HEIDENREICH S. Hot gas filtration-A review[J]. Fuel, 2013,104:83-94. doi: 10.1016/j.fuel.2012.07.059

    2. [2]

      WOOLCOCK P J, BROWN R C. A review of cleaning technologies for biomass-derived syngas[J]. Biomass Bioenerg, 2013,52:54-84. doi: 10.1016/j.biombioe.2013.02.036

    3. [3]

      SHARMA S D, DOLAN M, ILYUSHECHKIN A Y, MCLENNAN K G, NGUYEN T, CHASE D. Recent developments in dry hot syngas cleaning processes[J]. Fuel, 2010,89:817-826. doi: 10.1016/j.fuel.2009.05.026

    4. [4]

      ALVIN M A. Impact of char and ash fines on porous ceramic filter life[J]. Fuel Process Technol, 1998,56:143-168. doi: 10.1016/S0378-3820(97)00088-X

    5. [5]

      SIMEONE E, SIEDLECKI M, NACKEN M, HEIDENREICH S, DE JONG W. High temperature gas filtration with ceramic candles and ashes characterisation during steam-oxygen blown gasification of biomass[J]. Fuel, 2013,108:99-111. doi: 10.1016/j.fuel.2011.10.030

    6. [6]

      KAMIYA H, SEKIYA Y, HORIO M. Thermal stress fracture of rigid ceramic filter due to char combustion in collected dust layer on filter surface[J]. Powder Technol, 2011,115(2):139-145.  

    7. [7]

      HEMMER G, HOFF D, KASPER G. Thermo-analysis of fly ash and other particulate materials for predicting stable filtration of hot gases[J]. Adv Powder Technol, 2003,14(6):631-655. doi: 10.1163/15685520360731954

    8. [8]

      HURLEY J P, MUKHERJEE B. Assessment of filter dust characteristics that cause filter failure during hot-gas filtration[J]. Energ Fuel, 2006,20(4):1629-1638. doi: 10.1021/ef050303k

    9. [9]

      GONG Zhi, SU De-ren, ZENG Zhong-hua, WEI Zhi-guo, PAN Xian-qi. Experimental study on cordierite ceramic filter for biomass fuel gas filtration[J]. J Ceram, 2011,32(3):347-352.  

    10. [10]

      LANG Lin, XIE Jian-jun, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Hot gas filtration performance of modified ceramic candles for biomass gasfication[J]. J Eng Thermophys, 2014,35(8):1665-1668.  

    11. [11]

      YIN Xiu-li, WU Jin-hu, DING Ming-yue, LANG Lin, XIE Jian-jun, WANG Shu-rong. The key technology and demonstration unit for 1000-ton synthol liquid fuel by biomass gasification[R]. 455860816-3011BAD22B06/01, 2011.

    12. [12]

      LANG Lin, YIN Xiu-li, WU Chuang-zhi, PAN Xian-qi. An integrated high-temperature dust/tar purification technologyfor the crude biomass fuel gas[P]. Chinese Patent, ZL201310590071. 7, Mar. 5th, 2014.

    13. [13]

      WU Chuang-zhi, YING Hao, LI Zong-li, YIN Xiu-li, PAN Xian-qi, ZHOU Yi. The integrated systems for biomass gasification, power generation and CHP[R]. 455860816-2012BAA09B03/01, 2012.

    14. [14]

      JIANG Jun-fei. The partial oxidation of the particulate matters in product gas[D]. Beijing: Chinese Academy of Sciences, 2016.

    15. [15]

      CHEN Liang. Experimental study on biomass pyrolysis characteristics in the presence of oxygen[D]. Shanghai: Shanghai Jiao Tong University, 2011. 

    16. [16]

      NISHIMIYA K, HATA T, IMAMURA Y, ISHIHARA S. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy[J]. J Wood Sci, 1998,44(1):56-61. doi: 10.1007/BF00521875

    17. [17]

      Zhang Na. Study on the transformation characteristics of nitrogen during pyrolysis of sewage sludge[D]. Shenyang: Shenyang Aerospace University, 2012. 

    18. [18]

      SULIMAN W, HARSH A J B, ABU-LAIL N I, FORTUNA A, DALLMEYER I, GARCIA-PEREZ M. Modification of biochar surface by air oxidation:Role of pyrolysis temperature[J]. Biomass Bioenerg, 2016,85:1-11. doi: 10.1016/j.biombioe.2015.11.030

    19. [19]

      CHENG C H, LEHMANN J, THIES J E, BURTON S D, ENGELHRAD M H. Oxidation of black carbon by biotic and abiotic processes[J]. Org Geochem, 2006,37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022

    20. [20]

      BOEHM H P. Surface oxides on carbon and their analysis:a critical assessment[J]. Carbon, 2002,40(2):145-149. doi: 10.1016/S0008-6223(01)00165-8

    21. [21]

      WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol, 2013,41(12):1422-1426.  

    22. [22]

      SONG Yu, ZHU Yan-ming, LI Wu. Structure evolution of oxygen functional groupsin Dongsheng long flame coal by 13C-NMR and FT-IR[J]. J Fuel Chem Technol, 2015,43(5):519-529.  

    23. [23]

      BREWER C E, SCHMIDT-ROHR K, SATRIO J A, BROWN R C. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environ Prog Sustain, 2009,28(3):386-396. doi: 10.1002/ep.v28:3

    24. [24]

      SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of Argonne premium coals[J]. Energ Fuel, 1989,3(2):187-193. doi: 10.1021/ef00014a012

    25. [25]

      THOMAS S, LEDESMA E B, WORNAT M J. The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fule-rich oxidation conditions[J]. Fuel, 2007,86(16):2581-2595. doi: 10.1016/j.fuel.2007.02.003

    26. [26]

      THOMAS S, WORNAT M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol[J]. Fuel, 2008,87(6):768-781. doi: 10.1016/j.fuel.2007.07.016

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

Metrics
  • PDF Downloads(7)
  • Abstract views(1973)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return