Citation: Mohabeer Chetna, Reyes Luis, Abdelouahed Lokmane, Marcotte Stéphane, Buvat Jean-Christophe, Tidahy Lucette, Abi-Aad Edmond, Taouk Bechara. Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 153-166. shu

Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives

  • Corresponding author: Taouk Bechara, bechara.taouk@insa-rouen.fr
  • Received Date: 25 September 2018
    Revised Date: 9 January 2019

    Fund Project: The project was supported by the European Union with the European Regional Development Fund (ERDF) and the Regional Council of Normandie

Figures(10)

  • This study presents a detailed analysis of the catalytic de-oxygenation of the liquid and gaseous pyrolytic products of two biomasses (beech wood and flax shives) using different catalysts (commercial HZSM-5 and H-Y, and lab-synthesised Fe-HZSM-5, Fe-H-Y, Pt/Al2O3 and CoMo/Al2O3). The experiments were all conducted in a semi-batch reactor under the same operating conditions for all feed materials. BET specific surface area, BJH pore size distribution and FT-IR technologies have been used to characterise the catalysts, while gas chromatography-mass spectrometry (GC-MS), flame ionisation detection (GC-FID) and thermal conductivity detection (GC-TCD) were used to examine the liquid and gaseous pyrolytic products. It was firstly seen that at higher catalyst-to-biomass ratios of 4:1, de-oxygenation efficiency did not experience any further significant improvement. Fe-HZSM-5 was deemed to be the most efficient of the catalysts utilised as it helped reach the lowest oxygen contents in the bio-oils samples and the second best was HZSM-5. It was also found that HZSM-5 and H-Y tended to privilege the decarbonylation route (production of CO), whilst their iron-modified counterparts favoured the decarboxylation one (production of CO2) for both biomasses studied. It was then seen that the major bio-oil components (carboxylic acids) underwent almost complete conversion under catalytic treatment to produce mostly unoxygenated aromatic compounds, phenols and gases like CO and CO2. Finally, phenols were seen to be the family most significantly formed from the actions of all catalysts.
  • 加载中
    1. [1]

      Energetics Inc. Energy and Environmental Profile of the U.S[Z]. Chemical Industry. U.S. Department of Energy, Office of Industrial Technologies, 2000.

    2. [2]

      CHENG S, WEI L, ZHAO X, JULSON J. Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading[J]. Catalysts, 2016,6(12)195. doi: 10.3390/catal6120195

    3. [3]

      GUDA V, TOGHIANI H. Catalytic upgrading of pinewood fast pyrolysis vapors using an integrated Auger-packed bed reactor system:Effects of acid catalysts on yields and distribution of pyrolysis products[J]. J Prod Ind, 2015,4(2):33-43.

    4. [4]

      FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol, 2010,91(1):25-32.  

    5. [5]

      GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols[J]. Ind Eng Chem Res, 2004,43(11):2610-2618. doi: 10.1021/ie030791o

    6. [6]

      GUNAWARDENA D A, FERNANDO S D. Methods and applications of deoxygenation for the conversion of biomass to petrochemical products[C]//Biomass Now-Cultivation and Utilization. 2013.

    7. [7]

      ARENAMNART S, TRAKARNPRUK W. Ethanol conversion to ethylene using metal-mordenite catalysts[J]. Int J Appl Sci Eng, 2006,4(1):21-32.

    8. [8]

      CHENG Y-T, JAE J, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem, 2012,124(6):1416-1419. doi: 10.1002/ange.201107390

    9. [9]

      LI P, LI D, YANG H, WANG X, CHEN H. Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors[J]. Energy Fuels, 2016,30(4):3004-3013. doi: 10.1021/acs.energyfuels.5b02894

    10. [10]

      MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chem Eng, 2015,3(7):1623-1631. doi: 10.1021/acssuschemeng.5b00335

    11. [11]

      SUN L, ZHANG X, CHEN L, ZHAO B, YANG S, XIE X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts[J]. J Anal Appl Pyrolysis, 2016,121(Supplement C):342-346.  

    12. [12]

      MORTENSEN P M, GRUNWALDT J-D, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A:Gen, 2011,407(1/2):1-19.  

    13. [13]

      PAYORMHORM J, KANGVANSAICHOL K, REUBROYCHAROEN P, KUCHONTHARA P, HINCHIRANAN N. Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil[J]. Bioresour Technol, 2013,139:128-135. doi: 10.1016/j.biortech.2013.04.023

    14. [14]

      ZHANG J, WANG K, NOLTE M W, CHOI Y S, BROWN R C, SHANKS B H. Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts[J]. ACS Catal, 2016,6(4):2608-2621. doi: 10.1021/acscatal.6b00245

    15. [15]

      MOHABEER C, ABDELOUAHED L, MARCOTTE S, TAOUK B. Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components[J]. J Anal Appl Pyrolysis, 2017,127:269-277.  

    16. [16]

      GARCÍA J R, BERTERO M, FALCO M, SEDRAN U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication[J]. Appl Catal A:Gen, 2015,503:1-8. doi: 10.1016/j.apcata.2014.11.005

    17. [17]

      AHO A, KUMAR N, LASHKUL A V, ERÄNEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B, HUPA M, MURZIN Y D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010,89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009

    18. [18]

      DUMEIGNIL F, SATO K, IMAMURA M, MATSUBAYASHI N, PAYEN E, SHIMADA H. Characterization and hydrodesulfurization activity of CoMo catalysts supported on sol-gel prepared Al2O3[J]. Appl Catal A:Gen, 2005,287(1):135-145. doi: 10.1016/j.apcata.2005.03.034

    19. [19]

      DEKA R C. Acidity in zeolites and their characterization by different spectroscopic methods[J]. Indian J Chem Technol, 1998,5:109-123.

    20. [20]

      TOPALOǦLU Y D, BILGIÇ C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR-pyridine adsorption methods[J]. Surf Interface Anal, 2010,42(6/7):959-962.  

    21. [21]

      LI H, YAN Y, REN Z. Online upgrading of organic vapors from the fast pyrolysis of biomass[J]. J Fuel Chem Technol, 2008,36(6):666-671. doi: 10.1016/S1872-5813(09)60002-5

    22. [22]

      HORNUNG A. Intermediate Pyrolysis as an Alternative to Fast Pyrolysis[C]//Bioenergy Iv: Innovations in Biomass Conversion for Heat, Power, Fuels & Chemicals. 2014. 

    23. [23]

      MAHMOOD A S N, BRAMMER J G, HORNUNG A, STEELE A, POULSTON S. The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain[J]. J Anal Appl Pyrolysis, 2013,103:328-342. doi: 10.1016/j.jaap.2012.09.009

    24. [24]

      TORRI I D, PAASIKALLIO V, FACCINI C S, HUFF R, CARAMÃO E B, SACON V, OASMAA A, ZINI C A. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization[J]. Bioresour Technol, 2016,200:680-690. doi: 10.1016/j.biortech.2015.10.086

    25. [25]

      KEBELMANN K, HORNUNG A, KARSTEN U, GRIFFITHS G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components[J]. Biomass Bioenergy, 2013,49:38-48. doi: 10.1016/j.biombioe.2012.12.006

    26. [26]

      GARCÍA R, PIZARRO C, LAVÍN A G, BUENO J L. Biomass proximate analysis using thermogravimetry[J]. Bioresour Technol, 2013,139:1-4.  

    27. [27]

      CHARON N, PONTHUS J, ESPINAT D, BROUST F. Multi-technique characterization of fast pyrolysis oils[J]. J Anal Appl Pyrolysis, 2015,116:18-26. doi: 10.1016/j.jaap.2015.10.012

    28. [28]

      JANNOT Y. Isothermes de sorption: Modèles et détermination[Z]. 2008.

    29. [29]

      WARD J W. Thermal decomposition of ammonium Y zeolite[J]. J Catal, 1970,18(3):348-351.  

    30. [30]

      LOBREE L J, HWANG I-C, REIMER J A, BELL A T. Investigations of the state of Fe in H-ZSM-5[J]. J Catal, 1999,186(2):242-253.  

    31. [31]

      NAQVI S R, UEMURA Y, YUSUP S, SUGIUR Y, NISHIYAMA N, NAQVI M. The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors[J]. Energy Procedia, 2015,75:793-800. doi: 10.1016/j.egypro.2015.07.126

    32. [32]

      PUÉRTOLAS B, KELLER T C, MITCHELL S, PÉREZ-RAMÍREZ J. Deoxygenation of bio-oil over solid base catalysts:From model to realistic feeds[J]. Appl Catal B:Environ, 2016,184:77-86.

    33. [33]

      GARCIA L, SALVADOR M L, ARAUZO J, BILBAO R. Influence of catalyst weight/biomass flow rate ratio on gas production in the catalytic pyrolysis of pine sawdust at low temperatures[J]. Ind Eng Chem Res, 1998,37:3812-3819.

    34. [34]

      IMRAN A A, BRAMER E A, SESHAN K, BREM G. Catalytic flash pyrolysis of biomass using different types of zeolite and online vapor fractionation[J]. Energies, 2016,9(3)187. doi: 10.3390/en9030187

    35. [35]

      WANG C, HAO Q, LU D, JIA Q, LI G, XU B. Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis[J]. Chin J Catal, 2008,29(9):907-912. doi: 10.1016/S1872-2067(08)60073-X

    36. [36]

      YOO M L, PARK Y H, PARK Y-K, PARK S H. Catalytic pyrolysis of wild reed over a zeolite-based waste catalyst[J]. Energies, 2016,9(3)201. doi: 10.3390/en9030201

    37. [37]

      MUKARAKATE C, MCBRAYER J D, EVANS T, BUDHI S. Catalytic fast pyrolysis of biomass:the reactions of water and aromatic intermediates produces phenols[J]. Green Chem, 2015,17(8):4217-4227.  

    38. [38]

      GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 Zeolite. Ⅱ. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004,43(11):2619-2626.  

    39. [39]

      GUO Z, WANG S, ZHU Y, LUO Z, CEN K. Separation of acid compounds for refining biomass pyrolysis oil[J]. J Fuel Chem Technol, 2009,37(1):49-52.  

    40. [40]

      YANG H, YAO J, CHEN G, MA W, YAN B, QI Y. Overview of upgrading of pyrolysis oil of biomass[J]. Energy Procedia, 2014,61:1306-1309. doi: 10.1016/j.egypro.2014.11.1087

    41. [41]

      YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12):1781-1788.  

    42. [42]

      CHANTAL P, KALIAGUINE S, GRANDMAISON J L, MAHAY A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5[J]. Appl Catal, 1984,10(3):317-332. doi: 10.1016/0166-9834(84)80127-X

  • 加载中
    1. [1]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    2. [2]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    3. [3]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    4. [4]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    5. [5]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    8. [8]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    13. [13]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    14. [14]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    15. [15]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    16. [16]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    17. [17]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    18. [18]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    19. [19]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    20. [20]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

Metrics
  • PDF Downloads(6)
  • Abstract views(352)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return