Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives
- Corresponding author: Taouk Bechara, bechara.taouk@insa-rouen.fr
Citation:
Mohabeer Chetna, Reyes Luis, Abdelouahed Lokmane, Marcotte Stéphane, Buvat Jean-Christophe, Tidahy Lucette, Abi-Aad Edmond, Taouk Bechara. Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(2): 153-166.
Energetics Inc. Energy and Environmental Profile of the U.S[Z]. Chemical Industry. U.S. Department of Energy, Office of Industrial Technologies, 2000.
CHENG S, WEI L, ZHAO X, JULSON J. Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading[J]. Catalysts, 2016,6(12)195. doi: 10.3390/catal6120195
GUDA V, TOGHIANI H. Catalytic upgrading of pinewood fast pyrolysis vapors using an integrated Auger-packed bed reactor system:Effects of acid catalysts on yields and distribution of pyrolysis products[J]. J Prod Ind, 2015,4(2):33-43.
FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol, 2010,91(1):25-32.
GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols[J]. Ind Eng Chem Res, 2004,43(11):2610-2618. doi: 10.1021/ie030791o
GUNAWARDENA D A, FERNANDO S D. Methods and applications of deoxygenation for the conversion of biomass to petrochemical products[C]//Biomass Now-Cultivation and Utilization. 2013.
ARENAMNART S, TRAKARNPRUK W. Ethanol conversion to ethylene using metal-mordenite catalysts[J]. Int J Appl Sci Eng, 2006,4(1):21-32.
CHENG Y-T, JAE J, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem, 2012,124(6):1416-1419. doi: 10.1002/ange.201107390
LI P, LI D, YANG H, WANG X, CHEN H. Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors[J]. Energy Fuels, 2016,30(4):3004-3013. doi: 10.1021/acs.energyfuels.5b02894
MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chem Eng, 2015,3(7):1623-1631. doi: 10.1021/acssuschemeng.5b00335
SUN L, ZHANG X, CHEN L, ZHAO B, YANG S, XIE X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts[J]. J Anal Appl Pyrolysis, 2016,121(Supplement C):342-346.
MORTENSEN P M, GRUNWALDT J-D, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A:Gen, 2011,407(1/2):1-19.
PAYORMHORM J, KANGVANSAICHOL K, REUBROYCHAROEN P, KUCHONTHARA P, HINCHIRANAN N. Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil[J]. Bioresour Technol, 2013,139:128-135. doi: 10.1016/j.biortech.2013.04.023
ZHANG J, WANG K, NOLTE M W, CHOI Y S, BROWN R C, SHANKS B H. Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts[J]. ACS Catal, 2016,6(4):2608-2621. doi: 10.1021/acscatal.6b00245
MOHABEER C, ABDELOUAHED L, MARCOTTE S, TAOUK B. Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components[J]. J Anal Appl Pyrolysis, 2017,127:269-277.
GARCÍA J R, BERTERO M, FALCO M, SEDRAN U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication[J]. Appl Catal A:Gen, 2015,503:1-8. doi: 10.1016/j.apcata.2014.11.005
AHO A, KUMAR N, LASHKUL A V, ERÄNEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B, HUPA M, MURZIN Y D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010,89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009
DUMEIGNIL F, SATO K, IMAMURA M, MATSUBAYASHI N, PAYEN E, SHIMADA H. Characterization and hydrodesulfurization activity of CoMo catalysts supported on sol-gel prepared Al2O3[J]. Appl Catal A:Gen, 2005,287(1):135-145. doi: 10.1016/j.apcata.2005.03.034
DEKA R C. Acidity in zeolites and their characterization by different spectroscopic methods[J]. Indian J Chem Technol, 1998,5:109-123.
TOPALOǦLU Y D, BILGIÇ C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR-pyridine adsorption methods[J]. Surf Interface Anal, 2010,42(6/7):959-962.
LI H, YAN Y, REN Z. Online upgrading of organic vapors from the fast pyrolysis of biomass[J]. J Fuel Chem Technol, 2008,36(6):666-671. doi: 10.1016/S1872-5813(09)60002-5
HORNUNG A. Intermediate Pyrolysis as an Alternative to Fast Pyrolysis[C]//Bioenergy Iv: Innovations in Biomass Conversion for Heat, Power, Fuels & Chemicals. 2014.
MAHMOOD A S N, BRAMMER J G, HORNUNG A, STEELE A, POULSTON S. The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain[J]. J Anal Appl Pyrolysis, 2013,103:328-342. doi: 10.1016/j.jaap.2012.09.009
TORRI I D, PAASIKALLIO V, FACCINI C S, HUFF R, CARAMÃO E B, SACON V, OASMAA A, ZINI C A. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization[J]. Bioresour Technol, 2016,200:680-690. doi: 10.1016/j.biortech.2015.10.086
KEBELMANN K, HORNUNG A, KARSTEN U, GRIFFITHS G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components[J]. Biomass Bioenergy, 2013,49:38-48. doi: 10.1016/j.biombioe.2012.12.006
GARCÍA R, PIZARRO C, LAVÍN A G, BUENO J L. Biomass proximate analysis using thermogravimetry[J]. Bioresour Technol, 2013,139:1-4.
CHARON N, PONTHUS J, ESPINAT D, BROUST F. Multi-technique characterization of fast pyrolysis oils[J]. J Anal Appl Pyrolysis, 2015,116:18-26. doi: 10.1016/j.jaap.2015.10.012
JANNOT Y. Isothermes de sorption: Modèles et détermination[Z]. 2008.
WARD J W. Thermal decomposition of ammonium Y zeolite[J]. J Catal, 1970,18(3):348-351.
LOBREE L J, HWANG I-C, REIMER J A, BELL A T. Investigations of the state of Fe in H-ZSM-5[J]. J Catal, 1999,186(2):242-253.
NAQVI S R, UEMURA Y, YUSUP S, SUGIUR Y, NISHIYAMA N, NAQVI M. The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors[J]. Energy Procedia, 2015,75:793-800. doi: 10.1016/j.egypro.2015.07.126
PUÉRTOLAS B, KELLER T C, MITCHELL S, PÉREZ-RAMÍREZ J. Deoxygenation of bio-oil over solid base catalysts:From model to realistic feeds[J]. Appl Catal B:Environ, 2016,184:77-86.
GARCIA L, SALVADOR M L, ARAUZO J, BILBAO R. Influence of catalyst weight/biomass flow rate ratio on gas production in the catalytic pyrolysis of pine sawdust at low temperatures[J]. Ind Eng Chem Res, 1998,37:3812-3819.
IMRAN A A, BRAMER E A, SESHAN K, BREM G. Catalytic flash pyrolysis of biomass using different types of zeolite and online vapor fractionation[J]. Energies, 2016,9(3)187. doi: 10.3390/en9030187
WANG C, HAO Q, LU D, JIA Q, LI G, XU B. Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis[J]. Chin J Catal, 2008,29(9):907-912. doi: 10.1016/S1872-2067(08)60073-X
YOO M L, PARK Y H, PARK Y-K, PARK S H. Catalytic pyrolysis of wild reed over a zeolite-based waste catalyst[J]. Energies, 2016,9(3)201. doi: 10.3390/en9030201
MUKARAKATE C, MCBRAYER J D, EVANS T, BUDHI S. Catalytic fast pyrolysis of biomass:the reactions of water and aromatic intermediates produces phenols[J]. Green Chem, 2015,17(8):4217-4227.
GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 Zeolite. Ⅱ. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004,43(11):2619-2626.
GUO Z, WANG S, ZHU Y, LUO Z, CEN K. Separation of acid compounds for refining biomass pyrolysis oil[J]. J Fuel Chem Technol, 2009,37(1):49-52.
YANG H, YAO J, CHEN G, MA W, YAN B, QI Y. Overview of upgrading of pyrolysis oil of biomass[J]. Energy Procedia, 2014,61:1306-1309. doi: 10.1016/j.egypro.2014.11.1087
YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12):1781-1788.
CHANTAL P, KALIAGUINE S, GRANDMAISON J L, MAHAY A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5[J]. Appl Catal, 1984,10(3):317-332. doi: 10.1016/0166-9834(84)80127-X
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
Tong Zhao , Ke Wang , Feiyu Liu , Shiyu Zhang , Shih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Junhao Dai , Zhu He , Xinhai Li , Guochun Yan , Hui Duan , Guangchao Li , Zhixing Wang , Huajun Guo , Wenjie Peng , Jiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Xi Chen , Xue Zhang , Shuai Yang , Jie Wang , Tian Tang , Maling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021
Huazhe Wang , Chenghuan Qiao , Chuchu Chen , Bing Liu , Juanshan Du , Qinglian Wu , Xiaochi Feng , Shuyan Zhan , Wan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244
(a): HZSM-5; (b): Fe-HZSM-5; (c): H-Y; (d): γ-Al2O3