Citation: Qiaoling Zeng, Yingxiang Liu, Geng Li, Yuzhuo Ma. Study on 3D-QSAR, Molecular Docking and Molecular Dynamics of DCN1-UBE2M Interaction Inhibitor[J]. Chemistry, ;2021, 84(5): 486-496. shu

Study on 3D-QSAR, Molecular Docking and Molecular Dynamics of DCN1-UBE2M Interaction Inhibitor

  • Corresponding author: Yingxiang Liu, liuyingxiang@gzucm.edu.cn
  • Received Date: 8 October 2020
    Accepted Date: 10 November 2020

Figures(7)

  • Neddylation is a post-translational modification of protein, and its abnormality can lead to neurodegenerative diseases and a variety of tumors which is therefore regarded as a promising anti-tumor target. Blockage of DCN1-UBE2M interaction can selectively inhibit neddylation. In this paper, the study of 3D-QSAR, molecular docking and molecular dynamics simulation studies were carried out on the piperidinylurea DCN1-UBE2M interaction inhibitors. CoMFA and CoMSIA methods for 3D-QSAR were used to build the models, whose cross-validation coefficients q2 were 0.686 and 0.682, and the fitting verification coefficients r2 were 0.966 and 0.931, respectively, indicating the reliability of the model and its good predictive ability. Furthermore, molecular docking was used to analyze the interaction of piperidinylurea compounds with DCN1, and the results showed that they mainly bind to the target protein through hydrogen bond interaction and hydrophobic interaction. Study on molecular dynamics simulation further understand the binding model and verify the docking results. These research provided clues for structural optimization of such compounds.
  • 加载中
    1. [1]

      Han Z J, Feng Y H, Gu B H, et al. Int. J. Oncol., 2018, 52(4): 1081~1094.

    2. [2]

      Venne A S, Kollipara L. Proteomics, 2014, 14(4-5): 513~524. 

    3. [3]

      Zhao Y, Morgan M A, Sun Y. Antioxid. Redox Sign., 2014, 21(17): 2383~2400. 

    4. [4]

      Chen Y, Neve R L, Liu H. J. Cell. Mol. Med., 2012, 16(11): 2583~2591. 

    5. [5]

      Zhou L, Zhang W, Sun Y, et al. Cell. Signal., 2018, 44: 92~102. 

    6. [6]

      Li L, Kang J, Zhang W, et al. EBioMedicine, 2019, 45: 81~91. 

    7. [7]

      Zheng N, Schulman B A, Song L Z, et al. Nature, 2002, 416(6882): 703~709. 

    8. [8]

      Petroski M D, Deshaies R J. Nat. Rev. Mol. Cell. Biol., 2005, 6(1): 9~20.

    9. [9]

      Zhao Y, Sun Y. Curr. Pharm. Des., 2013, 19(18): 3215~3225. 

    10. [10]

      Wu S, Yu L. Cytotechnology, 2016, 68(1): 1~8. 

    11. [11]

      Milhollen M A, Thomas M P, Narayanan U, et al. Cancer Cell, 2012, 21(3): 388~401. 

    12. [12]

      Toth J I, Yang L, Dahl R, et al. Cell Rep., 2012, 1(4): 309~316. 

    13. [13]

      Yu Q, Jiang Y, Sun Y. Acta Pharm. Sin. B, 2020, 10(5): 746~765. 

    14. [14]

      Hammill J T, Scott D C, Min J, et al. J. Med. Chem., 2018, 61(7): 2680~2693. 

    15. [15]

      Hammill J T, Bhasin D, Scott D C, et al. J. Med. Chem., 2018, 61(7): 2694~2706. 

    16. [16]

      Milne G W A. J. Chem. Inf. Model., 2010, 50: 2053~2053. 

    17. [17]

       

    18. [18]

      Abraham M J, Murtola T, Schulz R, et al. SoftwareX, 2015, (1-2): 19~25.

    19. [19]

      Schüttelkopf A W, Van Aalten D M F. Acta Crystallogr. D, 2004, 60(8): 1355~1363. 

    20. [20]

       

    21. [21]

       

    22. [22]

      Oluić J, Nikolic K, Vucicevic J, et al. Comb. Chem. High. T. Screen., 2017, 20(4): 292~303.

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(31)
  • Abstract views(3527)
  • HTML views(741)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return