Citation: Kailin Chen, Xiaofeng Huang, Linli Li, Xibin Yang, Ming Jiang. Research Progress in Removal of Carbonyl Sulfide from Waste Gas by Adsorption Method[J]. Chemistry, ;2021, 84(6): 543-552. shu

Research Progress in Removal of Carbonyl Sulfide from Waste Gas by Adsorption Method

  • Corresponding author: Xiaofeng Huang, hxfkmust@163.com
  • Received Date: 1 September 2020
    Accepted Date: 30 January 2021

Figures(3)

  • Carbonyl sulfide (COS) is widely found in yellow phosphorus tail gas, calcium carbide furnace tail gas and other mining and metallurgy waste gas, but it is difficult to remove directly due to its stable structure, weak polarity and acidity. In this paper, the commonly used adsorbents and modification methods of adsorbent for COS removal by adsorption method were reviewed, the active components involved in loading modification were introduced in detail, the main factors affecting effect of adsorbents and the adsorption mechanism were analyzed, and regeneration methods for different adsorbents and effects after regeneration were compared. Finally, the shortcomings of the adsorption method to remove COS are analyzed, and the future development direction of adsorbents suitable for COS removal is proposed.
  • 加载中
    1. [1]

      Svoronos P D N, Bruno T J. Ind. Eng. Chem. Res., 2002, 41(22): 5321~5336. 

    2. [2]

      Wang H Y, Yi H H, Ning P, et al. Chem. Eng. J., 2011, 166(1): 99~104. 

    3. [3]

      Zhao S Z, Yi H H, Tang X L, et al. Catal. Today, 2019, 327(SI): 161~167.

    4. [4]

      Liu Z T, Zhou J L, Zhang B J. J. Mole. Catal., 1994, 94(2): 255~261. 

    5. [5]

      Whelan M E, Min D H, Rhew R C. Atmos. Environ., 2013, 73: 131~137. 

    6. [6]

      Ratnasamy C, Wagner J P, Spivey S, et al. Catal. Today, 2012, 198(1): 233~238. 

    7. [7]

      Vaidya P D, Kenig E Y. Chem. Eng. J., 2009, 148(2-3): 207~211. 

    8. [8]

      Ogawa T, Noguchi K, Saito M, et al. J. Am. Chem. Soc., 2013, 135(10): 3818~3825. 

    9. [9]

      Sattler M L, Rosenberk R S. J. Air Waste Manage., 2012, 56(2): 219~224.

    10. [10]

      Mi J X, Chen X P, Zhang Q Y, et al. Chem. Commun., 2019, 55(63): 9375~9378. 

    11. [11]

      Weeraratna C, Amarasinghe C, Fernando R, et al. Chem. Phys. Lett., 2016, 657: 162~166. 

    12. [12]

      Le Guludec E, Oliviero L, Gilson J P, et al. Catal. Sci. Technol., 2015, 5(2): 835~842. 

    13. [13]

      Pourzolfaghar H, Ismail M H S, Izhar S, et al. Int. J. Chem. Environ. Eng., 2014, 5(1): 22~28.

    14. [14]

       

    15. [15]

      Boehm H P. Carbon, 2002, 40(2): 145~149. 

    16. [16]

      Sakanishi K, Wu Z H, Matsumura A, et al. Catal. Today, 2005, 104(1): 94~100. 

    17. [17]

      Bak C U, Lim C J, Lee J G, et al. R. Sep. Purif. Technol., 2019, 209: 542~549. 

    18. [18]

      Hanaoka T, Hiasa S, Edashige Y. Biomass Bioenerg., 2013, 59: 448~457. 

    19. [19]

      Dou J X, Tahmasebi A, Li X C, et al. Environ. Prog. Sustain., 2016, 35(2): 352~358. 

    20. [20]

       

    21. [21]

       

    22. [22]

      Wynnyk K G, Hojjati B, Pirzadeh P, et al. Adsorption, 2017, 23(1): 149~162. 

    23. [23]

      Ozaydin Z, Yasyerli S, Dogu G. Ind. Eng. Chem. Res., 2008, 47(4): 1035~1042. 

    24. [24]

      Zhu L J, Lv X F, Tong S Y, et al. J. Nat. Gas Sci. Eng., 2019, 69: 102941. 

    25. [25]

      Ryzhikov A, Hulea V, Tichit D, et al. Appl. Catal. A, 2011, 397(1/2): 218~224.

    26. [26]

      Chen X, Shen B X, Sun H, et al. Micropor. Mesopor. Mat., 2018, 261: 227~236. 

    27. [27]

       

    28. [28]

      Liu Y C, He H, Xu W Q, et al. J. Phys. Chem A, 2007, 111(20): 4333~4339. 

    29. [29]

      Liu J F, Yu Y B, Mu Y J, et al. J. Phys. Chem. B, 2006, 110(7): 3225~3230. 

    30. [30]

      Chen H H, Kong L D, Chen J M, et al. Environ. Sci. Technol., 2007, 41(18): 6484~6490 

    31. [31]

      Park Y C, Jo S H, Ryu H J. Korean J. Chem. Eng., 2012, 29(12): 1812~1816 

    32. [32]

      Slimane R B, Abbasian J. Ind. Eng. Chem. Res., 2000, 39(5): 1338~1344. 

    33. [33]

       

    34. [34]

      Lee Y J, Park N K, Han G B, et al. Curr. Appl. Phys., 2008, 8(6): 746~751. 

    35. [35]

      Kim J, Do J Y, Nahm K, et al. J. Nanosci. Nanotechnol., 2019, 19(10): 6609~6616. 

    36. [36]

       

    37. [37]

       

    38. [38]

      Xie W, Chang L P, Wang D H, et al. Fuel, 2010, 89(4): 868~873. 

    39. [39]

      Cavani F, Trifiro F, Vaccari A. Catal. Today, 1991, 11(2): 173~301 

    40. [40]

      Zahid W M, Othman M A, Abasaeed A E. J. Hazard. Mater., 2017, 331: 273~279. 

    41. [41]

      Sparks D E, Morgan T, Patterson P M, et al. Appl. Catal. B, 2008, 82(3/4): 190~198.

    42. [42]

      Toops T J, Crocker M. Appl. Catal. B, 2008, 82(3-4): 199~207. 

    43. [43]

      Zhao S Z, Yi H, Tang X L, et al. Mater. Chem. Phys., 2018, 205: 35~43. 

    44. [44]

      Glover T G, Peterson G W, Schindler B J, et al. Chem. Eng. Sci., 2011, 66(2): 163~170. 

    45. [45]

      Lee M H, Vikrant K, Younis S A, et al. J. Clean. Prod. 2020, 250, 119486

    46. [46]

      Aslam S, Subhan F, Yan Z F, et al. Chem. Eng. J., 2017, 315: 469~480. 

    47. [47]

       

    48. [48]

      Yu J L, Yin F K, Wang S Y, et al. Fuel, 2013, 108: 91~98. 

    49. [49]

      Kim J, Do J Y, Nahm K, et al. Sep. Purif. Technol., 2019, 211: 421~429. 

    50. [50]

       

    51. [51]

      Zhao S Z, Yi H H, Tang X L, et al. Ultrason. Sonochem., 2016, 32: 336~342. 

    52. [52]

      Zhao S Z, Tang X L, He M, et al. Sep. Purif. Technol., 2018, 194: 33~39. 

    53. [53]

       

    54. [54]

      Wang X Q, Ma Y X, Ning P, et al. Adsorption, 2014, 20(4): 623~630. 

    55. [55]

      Jiang M, Wang Z H, Ning P, et al. J. Taiwan Inst. Chem. E, 2014, 45(3): 901~907. 

    56. [56]

      Kim J, Do J Y, Park N K, et al. Sep. Purif. Technol., 2018, 207: 58~67. 

    57. [57]

      Shangguan J, Zhao Y S, Fan H L, et al. Fuel, 2013, 108: 80~84. 

    58. [58]

      Qiu J, Wang X Q, Ning P, et al. Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment, 2013: 888~891.

    59. [59]

      Wang Y J, Chen S Y, Chen H, et al. J. Energy Chem., 2013, 22(6): 902~906. 

    60. [60]

      Peyghan A A, Soleymanabadi H, Bagheri Z. J. Iran. Chem. Soc., 2015, 12(6): 1071~1076. 

    61. [61]

      Pearson R G. Inorg. Chim. Acta, 1995, 240(1-2): 93~98. 

    62. [62]

      Zhao S Z, Yi H H, Tang X L, et al. Adsorption, 2017, 23(7-8): 1013~1022. 

    63. [63]

      Fu C, Wang J B, Yang M G, et al. J. Non-Cryst. Solids, 2011, 357(3): 1172~1176. 

    64. [64]

      Yang Y, Shi Y X, Cai N S. Fuel, 2016, 181: 1020~1026. 

    65. [65]

      Zhao H, Zhang D X, Wang F F, et al. Proc. Saf. Environ., 2009, 87(4): 274~280. 

    66. [66]

      Zhang S Q, Kong L D, Zhao X, et al. Acta Phys. -Chim. Sin., 2013, 29(9): 2027~2034. 

    67. [67]

      Bacsik Z, Hedin N. Langmuir, 2018, 34(26): 7708~7713. 

    68. [68]

      Hanaoka T, Matsunaga K, Miyazawa T, et al. Catalysts, 2012, 2(4): 281~298.

    69. [69]

       

    70. [70]

      Wang X Q, Qiu J, Ning P, et al. J. Hazard. Mater., 2012, 229: 128~136.

    71. [71]

      Zhao H, Zhang D, Wang F, et al. Energ. Source. Part A, 2010, 32(8): 759~768. 

    72. [72]

       

    73. [73]

    74. [74]

       

    75. [75]

      Zhao S Z, Yi H H, Tang X L, et al. Catal. Today, 2019, DOI:10.1016/j.cattod.2014.07.035

    76. [76]

    77. [77]

       

    78. [78]

      Qiu J, Ning P, Wang X Q, et al. Front Env. Sci. Eng., 2016, 10(1): 11~18 

    79. [79]

      Wakker P, Gerritsen A W, Moulijn J A. Ind. Eng. Chem. Res., 1993, 32(1): 139~149. 

    80. [80]

      Zhao H, Xu Y N, Liu J Q. Adv. Mater. Res., 2012, 383~390: 5464~5469.

    81. [81]

      Ahmed I, Jhung S H. J. Hazard. Mater., 2016, 301: 259~276. 

    82. [82]

      Fa A J G, Orazi V, Jasen P, et al. Appl. Surf. Sci., 2020, 525: 146331. 

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    5. [5]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    19. [19]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(78)
  • Abstract views(5890)
  • HTML views(1006)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return