Citation: ZOU De-hai, YANG Xue, SHUI Heng-fu, WANG Xiao-ling, PAN Chun-xiu, WANG Zhi-cai, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, LI Zhan-ku, YAN Jing-chong, XU Charles Chunbao. Liquefaction of thermal extracts from co-thermal dissolution of a sub-bituminous coal with lignin and reusability of Ni-Mo-S/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 23-30. shu

Liquefaction of thermal extracts from co-thermal dissolution of a sub-bituminous coal with lignin and reusability of Ni-Mo-S/Al2O3 catalyst

  • Corresponding author: SHUI Heng-fu, shhf@ahut.edu.cn
  • Received Date: 25 September 2018
    Revised Date: 29 November 2018

    Fund Project: the Natural Scientific Foundation of China 21776001the Natural Scientific Foundation of China 21476003the Natural Scientific Foundation of China 21476004The project was supported by the National Key Research and Development Program of China (2018YFB0604600), the Natural Scientific Foundation of China (21476003, 21776001, 21476002, 21476004, 20108002), the Anhui Natural Science Foundation (1608085MB40) and the financial support from the Provincial Innovative Group for Processing & Clean Utilization of Coal Resourcethe National Key Research and Development Program of China 2018YFB0604600the Natural Scientific Foundation of China 21476002the Natural Scientific Foundation of China 20108002the Anhui Natural Science Foundation 1608085MB40

Figures(5)

  • Four thermal dissolution soluble fractions (TDSFs) with different thermal dissolution soluble yields (TDSYs) obtained from thermal and co-thermal dissolutions (CTDs) of a Chinese sub-bituminous Shenfu (SF) coal and lignin were characterized by elemental analysis, FT-IR and synchronous fluorescence spectrum measurements. The hydro-liquefaction properties of the four TDSFs and SF raw coal with and without catalyst were compared and the recycled use property of the catalyst in hydro-liquefaction of the TDSF from CTD of SF coal and lignin was further probed. The results suggests that the TDSF from the thermal dissolution (TD) of SF coal contained much more amount of aromatic components and polyaromatic hydrocarbons (PAHs) with 4 and more rings than those from the CTD of SF coal and lignin at the same temperature. TDSFs gave much higher liquefaction conversions and oil yields than SF raw coal in hydro-liquefaction with or without catalyst. Almost all TDSF was converted with much high yield of oil and the TDSF from CTD of SF coal and lignin gave higher yield of oil than that from the TD of SF coal in hydro-liquefaction with Ni-Mo-S/Al2O3 catalyst which demonstrated a good reusability in the hydro-liquefaction of TDSF from the CTD of SF coal and lignin. Carbon deposition was hardly observed in the 4 times recycle used catalyst.
  • 加载中
    1. [1]

      SHUI H F, YANG L, SHUI T, PAN C X, LI H P, WANG Z C, LEI Z P, REN S B, KANG S G. Hydro-liquefaction of thermal dissolution soluble fraction of Shenfu subbituminous coal and reusability of catalyst on the hydro-liquefaction[J]. Fuel, 2014,115(1):227-231.  

    2. [2]

      MIURA K, NAKAGAWA H, ASHIDA R, IHARA T. Production of clean fuels by solvent skimming of coal at around 350℃[J]. Fuel, 2004,83(6):733-738. doi: 10.1016/j.fuel.2003.09.019

    3. [3]

      MASAKI K, YOSHIDA T, LI C, TAKANOHASHI T, SAITO I. The effects of pretreatment and the addition of polar compounds on the production of "HyperCoal" from subbituminous coals[J]. Energy Fuels, 2004,18(4):995-1000.  

    4. [4]

      KASHIMURA N, TAKANOHASHI T, SAITO I. Effect of noncovalent bonds on the thermal extraction of subbituminous coals[J]. Energy Fuels, 2006,20(4):1605-1608. doi: 10.1021/ef060050a

    5. [5]

      SHUI H F, ZHOU Y, LI H P, WANG Z C, LEI Z P, REN S B, PAN C X, WANG W W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013,108(6):385-390.  

    6. [6]

      YOSHIDA T, LI C, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "HyperCoal" production (2)-effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004,86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003

    7. [7]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and in ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    8. [8]

      SHUI H F, HUI Z, JIANG Q Q, ZHOU H, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Co-thermal dissolution of Shenmu-Fugu subbituminous coal and sawdust[J]. Fuel Process Technol, 2015,131(3):87-92.  

    9. [9]

      SHUI H F, MA X Q, YANG L, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, XU C. Thermolysis of biomass-related model compounds and its promotion on the thermal dissolution of coal[J]. J Energy Institute, 2017,90(3):418-423.  

    10. [10]

      COUGHLIN R W, DAVOUDZADEH F. Coliquefaction of lignin and bituminous coal[J]. Fuel, 1986,65(1):95-106.  

    11. [11]

      ALTIERI P, COUGHLIN R W. Characterization of products formed during coliquefaction of lignin and bituminous coal at 400℃[J]. Energy Fuels, 1987,1(3):253-256.  

    12. [12]

      MATSUMURA Y, NONAKA H, YOKURA H, TSUTSUMI A, YOSHIDA K. Co-liquefaction of coal and cellulose in supercritical water[J]. Fuel, 1999,78:1049-56. doi: 10.1016/S0016-2361(99)00025-3

    13. [13]

      KARACA F, BOLAT E. Coprocessing of a Turkish lignite with a cellulosic waste material 1[J]. Fuel Process Technol, 2000,64(1/3):47-55.  

    14. [14]

      KARACA F, BOLAT E. Coprocessing of a Turkish lignite with a cellulosic waste material 2[J]. Fuel Process Technol, 2002,75(2):109-116. doi: 10.1016/S0378-3820(01)00252-1

    15. [15]

      LALVANI SB, MUCHMORE CB, KOROPCHAK J, ABASH B, CHIVATE P, CHAVEZT C. Lignin-augmented coal depolymerization under mild reaction conditions[J]. Energy Fuels, 1991,5(2):347-352.  

    16. [16]

      GUO Z X, BAI Z Q, BAI J, WANG Z Q, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011,92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014

    17. [17]

      CHEN C, GAO J S, YAN Y J. Observation of the type of hydrogen bonds in coal by FTIR[J]. Energy Fuels, 1998,12(3):446-449. doi: 10.1021/ef970100z

    18. [18]

      CAI M F, SMART R B. Comparison of seven west Virginia coals with their N-methyl-2-pyrrolidinone-soluble extracts and residues. 1. Diffuse reflectance infrared Fourier transform spectroscopy[J]. Energy Fuels, 1994,8(2):369-374.  

    19. [19]

      DYRKACZ R A, BLOOMQUIST C A A. On the use of infrared spectroscopy to determine hydroxyl content and reactivity of O-acetylated and O-alkylated coals[J]. Energy Fuels, 1999,13(1):40-52.  

    20. [20]

      BENKHEDDA Z, LANDAIS P, KISTER J, DEREPPE J M, MONTHIOUX M. Spectroscopic analyses of aromatic hydrocarbons extracted from naturally and artificially matured coals[J]. Energy Fuels, 1992,6(2):166-172.  

    21. [21]

      WANG Z C, WEI C, SHUI H F, REN S B, PAN C X, WANG Z S, LI H P, LEI Z P. Synchronous fluorimetric characterization of heavy intermediates of coal direct liquefaction[J]. Fuel, 2012,98(8):67-72.  

    22. [22]

      SHUI H F, CHEN Z X, WANG Z C, ZHANG D X. Kinetics of Shenhua coal liquefication catalyzed by SO42-/ZrO2 solid acid[J]. Fuel, 2010,89(1):67-72.

    23. [23]

      KOYANO K, TAKANOHASHI T, SAITO I. Catalytic hydrogenation of HyperCoal (ashless coal) and reusability of catalyst[J]. Energy Fuels, 2009,23(7):3652-3657. doi: 10.1021/ef900135r

  • 加载中
    1. [1]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    2. [2]

      Liang LouXuncheng LiuYuanyu WangTao HuZhongjie WangHouqiang ShiJunkai XiongSiqi JingLiankang YeQihui GuoXiang Ge . Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient. Chinese Chemical Letters, 2025, 36(5): 109726-. doi: 10.1016/j.cclet.2024.109726

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    5. [5]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    6. [6]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    7. [7]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    10. [10]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    11. [11]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    14. [14]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    15. [15]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    18. [18]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    19. [19]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    20. [20]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

Metrics
  • PDF Downloads(6)
  • Abstract views(2161)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return