Citation: LIANG Quan-ming, LIANG Wen-jun, ZHANG Tie-jun, FAN Xing, SONG Li-yun, LI Jian, HE Hong, YUE Tao. Effects of Cl ions on low-temperature NO conversion by NH3 over V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1370-1376. shu

Effects of Cl ions on low-temperature NO conversion by NH3 over V2O5-WO3/TiO2 catalysts

  • Corresponding author: LI Jian, ljian@bjut.edu.cn HE Hong, hehong@bjut.edu.cn
  • Received Date: 20 July 2018
    Revised Date: 13 September 2018

    Fund Project: The project was supported by the National Key Research and Development Program of China (2017YFC0210303) and the Natural Science Foundation of Beijing, China (8152011)the National Key Research and Development Program of China 2017YFC0210303the Natural Science Foundation of Beijing, China 8152011

Figures(7)

  • The Cl-V2O5-WO3/TiO2 catalysts were prepared by impregnation methods. With the Cl ions content increased from 0 to 2.5%, the NO conversion of Cl-V2O5-WO3/TiO2 catalysts increased at first and then decreased. Combined with the experimental results, 1.5% Cl-V2O5-WO3/TiO2 catalyst was the optimal catalyst, NO conversion was higher than 95% in the range of 149-362℃, and NO conversion was higher than 90% in the temperature range of 145-385℃. The catalysts were characterized by XRF, BET, XRD, TG, FT-IR and H2-TPR. The specific surface area and pore volume of the catalysts decreased in different degrees after adding SO2 and H2O in reactant gas. The poisoned catalysts deposited sulfur species and contained NH4+ and SO42-. Adding appropriate amount of Cl ions inhibited the formation of side byproducts and enhanced the poisoning resistance of V2O5-WO3/TiO2 catalyst.
  • 加载中
    1. [1]

      CHENG Y F, ZHENG G J, WEI C, MU Q, ZHENG B, WANG Z B, GAO M, ZHANG Q, HE K B, CARMICHAEL G, PÖSCHL U, SU H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Sci Adv, 2016,2(12):1-11.  

    2. [2]

      LIETTI L, NOVA I, FORZATTI P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts[J]. Top Catal, 2000,11(1/4):111-122.  

    3. [3]

      BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988,2(4):369-531. doi: 10.1016/0920-5861(88)80002-6

    4. [4]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    5. [5]

      NOVA I, LIETTI L, CASAGRANDE L, DALL'ACQUA L, GIAMELLO E, FORZATTI P. Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts[J]. Appl Catal B:Environ, 1998,17(3):245-258. doi: 10.1016/S0926-3373(98)00015-0

    6. [6]

      KOBAYASHI M, KUMA R, MORITA A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catal Lett, 2006,112(1/2):37-44.  

    7. [7]

      PHIL H H, REDDY M P, KUMAR P A, JU L K, HYO J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008,78(3/4):301-308.  

    8. [8]

      SONG L Y, CHAO J D, FANG Y J, HE H, LI J, QIU W G, ZHANG G Z. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chem Eng J, 2016,303(1):275-281.  

    9. [9]

      LIU F D, HE H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catal Today, 2010,153(3/4):70-76.  

    10. [10]

      WU X D, YU W C, SI Z C, WENG D. Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride[J]. Front Env Sci Eng, 2013,7(3):420-427. doi: 10.1007/s11783-013-0489-0

    11. [11]

      ZHANG B K, LIU J, DAI G L, CHANG M, ZHENG C G. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst:Periodic density functional theory study[J]. Proc Combust Inst, 2015,35(3):2855-2865. doi: 10.1016/j.proci.2014.06.051

    12. [12]

      LISI L, LASORELLA G, MALLOGGI S, RUSSO G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Appl Catal B:Environ, 2004,50(4):251-258. doi: 10.1016/j.apcatb.2004.01.007

    13. [13]

      HOU Y Q, CAI G Q, HUANG Z G, HAN X J, GUO S J. Effect of HCl on V2O5/AC catalyst for NO reduction by NH3 at low temperatures[J]. Chem Eng J, 2014,247(6):59-65.  

    14. [14]

      SU C, NOTOYA F, SASAOKA E. Selective catalytic reduction (SCR) of NO with NH3 at low temperature using halogen ions-modified Al2O3, ZrO2, and TiO2 as catalysts[J]. Ind Eng Chem Res, 2003,42(23):5770-5774.  

    15. [15]

      WANG P, WANG Q S, MA X X, GUO R T, PAN W G. The influence of F and Cl on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3:A comparative study[J]. Catal Commun, 2015,71(5):84-87.

    16. [16]

      CHAO Jing-di, HE Hong, SONG Li-yun, FANG Yu-jiao, LIANG Quan-ming, ZHANG Gui-zhen, QIU Wen-ge, ZHANG Ran. Promotional effect of Pr-doping on the NH3-SCR activity over the V2O5-MoO3/TiO2 catalyst[J]. Chem J Chin Univ, 2015,36(3):523-530.  

    17. [17]

      LIANG Q M, LI J, HE H, LIANG W J, ZHANG T J, FAN X. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front Env Sci Eng, 2017,11(4):153-159.  

    18. [18]

      ZHANG T J, LI J, HE H, SONG Q Q, LIANG Q M. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front Environ Sci Eng, 2017,11(2):67-75.  

    19. [19]

      SONG L Y, ZHAN Z C, LIU X J, HE H, QIU W G, ZI X H. NOx selective catalytic reduction by ammonia over Cu-ETS-10[J]. Chin J Catal, 2014,35(7):1030-1035. doi: 10.1016/S1872-2067(14)60035-8

    20. [20]

      LI P, LIU Z Y, LI Q C, WU W Z, LIU Q Y. Multiple roles of SO2 in Selective catalytic reduction of NO by NH3 over V2O5/AC catalyst[J]. Ind Eng Chem Res, 2014,53(19):7910-7916. doi: 10.1021/ie4031488

    21. [21]

      WANG Y L, LI X X, ZHAN L, LI C, QIAO W M, LING L C. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Ind Eng Chem Res, 2015,54(8):2274-2278. doi: 10.1021/ie504074h

    22. [22]

      SOH B W, NAM I S. Effect of support morphology on the sulfur tolerance of V2O5/Al2O3 catalyst for the reduction of NO by NH3[J]. Ind Eng Chem Res, 2003,42(13):2975-2986. doi: 10.1021/ie020861b

    23. [23]

      MAO L Q, T-RAISSI A, HUANG C P, MURADOV N Z. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4[J]. Int J Hydrogen Energy, 2011,36(10):5822-5827. doi: 10.1016/j.ijhydene.2010.11.011

    24. [24]

      BETKE U, WICKLEDER M S. Sulfates of the refractory metals:Crystal structure and thermal behavior of Nb2O2(SO4)3, MoO2(SO4), WO(SO4)2, and two modifications of Re2O5(SO4)2[J]. Inorg Chem, 2011,50(3):858-872. doi: 10.1021/ic101455z

    25. [25]

      YU W C, WU X D, SI Z C, WENG D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Appl Surf Sci, 2013,283(20):209-214.  

    26. [26]

      ZHANG L, LI L L, CAO Y, YAO X J, GE C Y, GAO F, DENG Y, TANG C J, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165(18):589-598.  

    27. [27]

      WAQIF M, BAZIN P, SAUR O, LAVALLEY J C, BLANCHARD G, TOURET O. Study of ceria sulfation[J]. Appl Catal B:Environ, 1997,11(2):193-205. doi: 10.1016/S0926-3373(96)00040-9

    28. [28]

      YANG S J, GUO Y F, CHANG H Z, MA L, PENG Y, QU Z, YAN N Q, WANG C Z, LI J H. Novel effect of SO2 on the SCR reaction over CeO2:Mechanism and significance[J]. Appl Catal B:Environ, 2013,136/137(12):19-28.  

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(12)
  • Abstract views(629)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return