Effects of Cl ions on low-temperature NO conversion by NH3 over V2O5-WO3/TiO2 catalysts
- Corresponding author: LI Jian, ljian@bjut.edu.cn HE Hong, hehong@bjut.edu.cn
Citation:
LIANG Quan-ming, LIANG Wen-jun, ZHANG Tie-jun, FAN Xing, SONG Li-yun, LI Jian, HE Hong, YUE Tao. Effects of Cl ions on low-temperature NO conversion by NH3 over V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(11): 1370-1376.
CHENG Y F, ZHENG G J, WEI C, MU Q, ZHENG B, WANG Z B, GAO M, ZHANG Q, HE K B, CARMICHAEL G, PÖSCHL U, SU H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Sci Adv, 2016,2(12):1-11.
LIETTI L, NOVA I, FORZATTI P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts[J]. Top Catal, 2000,11(1/4):111-122.
BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988,2(4):369-531. doi: 10.1016/0920-5861(88)80002-6
BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.
NOVA I, LIETTI L, CASAGRANDE L, DALL'ACQUA L, GIAMELLO E, FORZATTI P. Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts[J]. Appl Catal B:Environ, 1998,17(3):245-258. doi: 10.1016/S0926-3373(98)00015-0
KOBAYASHI M, KUMA R, MORITA A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catal Lett, 2006,112(1/2):37-44.
PHIL H H, REDDY M P, KUMAR P A, JU L K, HYO J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008,78(3/4):301-308.
SONG L Y, CHAO J D, FANG Y J, HE H, LI J, QIU W G, ZHANG G Z. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chem Eng J, 2016,303(1):275-281.
LIU F D, HE H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catal Today, 2010,153(3/4):70-76.
WU X D, YU W C, SI Z C, WENG D. Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride[J]. Front Env Sci Eng, 2013,7(3):420-427. doi: 10.1007/s11783-013-0489-0
ZHANG B K, LIU J, DAI G L, CHANG M, ZHENG C G. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst:Periodic density functional theory study[J]. Proc Combust Inst, 2015,35(3):2855-2865. doi: 10.1016/j.proci.2014.06.051
LISI L, LASORELLA G, MALLOGGI S, RUSSO G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Appl Catal B:Environ, 2004,50(4):251-258. doi: 10.1016/j.apcatb.2004.01.007
HOU Y Q, CAI G Q, HUANG Z G, HAN X J, GUO S J. Effect of HCl on V2O5/AC catalyst for NO reduction by NH3 at low temperatures[J]. Chem Eng J, 2014,247(6):59-65.
SU C, NOTOYA F, SASAOKA E. Selective catalytic reduction (SCR) of NO with NH3 at low temperature using halogen ions-modified Al2O3, ZrO2, and TiO2 as catalysts[J]. Ind Eng Chem Res, 2003,42(23):5770-5774.
WANG P, WANG Q S, MA X X, GUO R T, PAN W G. The influence of F and Cl on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3:A comparative study[J]. Catal Commun, 2015,71(5):84-87.
CHAO Jing-di, HE Hong, SONG Li-yun, FANG Yu-jiao, LIANG Quan-ming, ZHANG Gui-zhen, QIU Wen-ge, ZHANG Ran. Promotional effect of Pr-doping on the NH3-SCR activity over the V2O5-MoO3/TiO2 catalyst[J]. Chem J Chin Univ, 2015,36(3):523-530.
LIANG Q M, LI J, HE H, LIANG W J, ZHANG T J, FAN X. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front Env Sci Eng, 2017,11(4):153-159.
ZHANG T J, LI J, HE H, SONG Q Q, LIANG Q M. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front Environ Sci Eng, 2017,11(2):67-75.
SONG L Y, ZHAN Z C, LIU X J, HE H, QIU W G, ZI X H. NOx selective catalytic reduction by ammonia over Cu-ETS-10[J]. Chin J Catal, 2014,35(7):1030-1035. doi: 10.1016/S1872-2067(14)60035-8
LI P, LIU Z Y, LI Q C, WU W Z, LIU Q Y. Multiple roles of SO2 in Selective catalytic reduction of NO by NH3 over V2O5/AC catalyst[J]. Ind Eng Chem Res, 2014,53(19):7910-7916. doi: 10.1021/ie4031488
WANG Y L, LI X X, ZHAN L, LI C, QIAO W M, LING L C. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Ind Eng Chem Res, 2015,54(8):2274-2278. doi: 10.1021/ie504074h
SOH B W, NAM I S. Effect of support morphology on the sulfur tolerance of V2O5/Al2O3 catalyst for the reduction of NO by NH3[J]. Ind Eng Chem Res, 2003,42(13):2975-2986. doi: 10.1021/ie020861b
MAO L Q, T-RAISSI A, HUANG C P, MURADOV N Z. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4[J]. Int J Hydrogen Energy, 2011,36(10):5822-5827. doi: 10.1016/j.ijhydene.2010.11.011
BETKE U, WICKLEDER M S. Sulfates of the refractory metals:Crystal structure and thermal behavior of Nb2O2(SO4)3, MoO2(SO4), WO(SO4)2, and two modifications of Re2O5(SO4)2[J]. Inorg Chem, 2011,50(3):858-872. doi: 10.1021/ic101455z
YU W C, WU X D, SI Z C, WENG D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Appl Surf Sci, 2013,283(20):209-214.
ZHANG L, LI L L, CAO Y, YAO X J, GE C Y, GAO F, DENG Y, TANG C J, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165(18):589-598.
WAQIF M, BAZIN P, SAUR O, LAVALLEY J C, BLANCHARD G, TOURET O. Study of ceria sulfation[J]. Appl Catal B:Environ, 1997,11(2):193-205. doi: 10.1016/S0926-3373(96)00040-9
YANG S J, GUO Y F, CHANG H Z, MA L, PENG Y, QU Z, YAN N Q, WANG C Z, LI J H. Novel effect of SO2 on the SCR reaction over CeO2:Mechanism and significance[J]. Appl Catal B:Environ, 2013,136/137(12):19-28.
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
reaction conditions: φNH3= φNO=0.07%, φO2=5%, N2 balance, GHSV=30000 h-1
reaction conditions: φNH3= φNO=0.07%, φSO2=0.03%, φO2=5%, N2 balance, GHSV=30000 h-1
conversion of the Cl-3VWT catalysts reaction conditions: φNH3= φNO=0.07%, φO2=5%, φSO2=0.035%, φH2O=15%, N2 balance, GHSV=30000 h-1
a: 0Cl-3VWT; b: 0.5Cl-3VWT; c: 1Cl-3VWT; d: 1.5Cl-3VWT; e: 2.5Cl-3VWT; f: 0Cl-3VWTSH; g: 1.5Cl-3VWTSH