Citation: LI Xia, ZENG Fan-gui, WANG Wei, DONG Kui. XRD characterization of structural evolution in low-middle rank coals[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 777-783. shu

XRD characterization of structural evolution in low-middle rank coals

  • Corresponding author: ZENG Fan-gui, zengfangui@tyut.edu.cn
  • Received Date: 21 January 2016
    Revised Date: 16 March 2016

    Fund Project: the Joint Funds of the Coal Based and Low Carbon of Shanxi U1510102The project was supported by National Natural Science Foundation of China 41302127Shanxi Province Coal Based Key Scientific and Technological Projects MQ2014-01

Figures(4)

  • The structural parameters including La, Lc and d002 of 28 coal samples with the maximum vitrinite reflectance Ro, max varying from 0.30% to 2.05% were analyzed using X-ray diffraction (XRD). The change in the XRD parameters associated with increasing vitrinite reflectance was obtained. The results indicate that, for the test coals with Ro, max less than 1.0%, the values of La and Lc sharply increase while d002 shows a reverse trend, and the decrease of oxygen-containing functional group and the length of branching aliphatic side chains are dominated. For those with Ro, max from 1.0% to 1.6%, the value of La continuously increases, d002 increases first and then decreases, and Lc decreases first and then remains steady. Moreover, dehydrogenation and adjusting the space steric hindrance are simultaneous. The value of d002 continues to decrease while La and Lc increases, and the variation of coal structure is dominated by aromatization process during the Ro, max range of 1.6% to 2.0%. The variation of XRD parameters presents close relation with the first and the second coalification jump phase.
  • 加载中
    1. [1]

      LARSEN J W, GUREVICH I, GLASS A S, STEVENSON D S. A method for counting the hydrogen-bond cross-links in coal[J]. Energy Fuels, 1996,10(6):1269-1272. doi: 10.1021/ef960004i

    2. [2]

      WATANABE I, SAKANISHI K, MOCHIDA I. Changes in coal aggregate structure by heat treatment and their coal rank dependency[J]. Energy Fuels, 2002,16(1):18-22. doi: 10.1021/ef010144e

    3. [3]

      LU L, SAHAJWALLA V, KONG C, HARRIS D. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3

    4. [4]

      WANG Li, ZHANG Peng-zhou. XRD study of coal structure[J]. Coal Convers, 1997,20(1):50-53.  

    5. [5]

      LUO Yun-fei, LI Wen-hua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. J China Coal Soc, 2004,29(3):338-341.  

    6. [6]

      LI Xiao-ming, CAO Dai-yong, ZHANG Shou-ren, XING Xiu-yun. Study of the XRD parameter evolution of coal of different metamorphism types[J]. Coal Geol Explor, 2003,31(3):5-7.  

    7. [7]

      JIANG Bo, QIN Yong, SONG Dang-yu, WANG Chao. XRD structure of high rank tectonic coals and its implication to structural geology[J]. J China Univ Min Technol, 1998,27(2):115-118.  

    8. [8]

      WU Xiao-ying. Study of XRD on the crystallite structure characteristics of high temperature coke of coals[J]. J Xi'an Min Inst, 1999,19(2):158-160.  

    9. [9]

      ZHANG Xiao-dong, ZHANG Peng. Characteristics of XRD parameter for different ranks of coals under fractional extraction and its evolution mechanism[J]. J China Coal Soc, 2014,39(5):941-946.  

    10. [10]

      WATANABE I, SAKANISHI K, MOCHIDA I. Changes in coal aggregate structure by heat treatment and their coal rank dependency[J]. Energy Fuels, 2002,16(1):18-22. doi: 10.1021/ef010144e

    11. [11]

      TAKAGI H, MARUYAMA K, YOSHIZAWA N, YAMADA Y, SATO Y. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel, 2004,83(17/18):2427-2433.  

    12. [12]

      WU S, GU J, ZHANG X, WU Y, GAO J. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008,22(1):199-206. doi: 10.1021/ef700371r

    13. [13]

      FENG B, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels, 2003,17(3):744-54. doi: 10.1021/ef0202541

    14. [14]

      LIN Q, GUET J M. Characterization of coals and macerais by X-ray diffraction[J]. Fuel, 1990,69(7):821-825. doi: 10.1016/0016-2361(90)90224-E

    15. [15]

      WU S, GU J, ZHANG X, WU Y, GAO J. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008,22(1):199-206. doi: 10.1021/ef700371r

    16. [16]

      PETERSEN H I, ROSENBERG P, NYTOFT H P. Oxygen groups in coals and alginite-rich kerogen revisited[J]. Int J of Coal Geol, 2008,74(2):93-113. doi: 10.1016/j.coal.2007.11.007

    17. [17]

      BODOEV N V, GUET J M, GRUBER R, DOLGOPOLOV N I, WILHELM J C, BAZAROVA O. FT-IR and XRD analysis of sapropelitic coals[J]. Fuel, 1996,75(7):839-842. doi: 10.1016/0016-2361(96)00022-1

    18. [18]

      SENNECA O, SALATINO P, MASI S. Microstructural changes and loss of gasification reactivity of chars upon heat treatment[J]. Fuel, 1998,77(13):1483-1493. doi: 10.1016/S0016-2361(98)00056-8

    19. [19]

      STRYDOM CA, BUNT J R, SCHOBERT H H, RAGHOO M. Changes to the functional groups of an inertinite rich medium rank coal during acid treatment processes[J]. Fuel Process Technol, 2011,92(4):764-770. doi: 10.1016/j.fuproc.2010.09.008

    20. [20]

      LI Xia, ZENG Fan-gui, WANG Wei, DONG Kui, CHENG Li-yuan. FT-IR characterization of structural evolution in the low-middle rank coals[J]. J China Coal Soc, 2015,40(12):2900-2908.  

    21. [21]

      WENG Cheng-min, PAN Zhi-gui. X-ray diffraction analysis of coal in Fengfeng coalfield[J]. Earth Sci, 1981(1):214-221.  

    22. [22]

      HAN De-xin. Coal Ketrology in China[M]. Xuzhou: China University of Mining and Technology Press, 1996: 260.

    23. [23]

      MOCHIDA I, SAKANISHI K. Catalysts for coal conversions of the next generation[J]. Fuel, 2000,79(3/4):221-228.  

    24. [24]

      ARENILLAS A, RUBIERA F, PIS J J, CUESTA M J, IGLESIAS M J, JIMÉNEZ A, SUÁREZ-RUIZ I. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. J Anal Appl Pyrolysis, 2003,68-69:371-385. doi: 10.1016/S0165-2370(03)00031-7

    25. [25]

      ZHANG Yu-bo. 13C-NMR research of coalfication mechanism for low-medium rank coal[D].Taiyuan: Taiyuan University of Technolgy, 2006. 

  • 加载中
    1. [1]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    2. [2]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    3. [3]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    4. [4]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Jibin Miao Changjie Mao Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    15. [15]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(1)
  • Abstract views(1226)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return