Citation: LIU Zhong, WANG Shuo, BAI Bao-quan. Thermodynamic study on effect of minerals in fly ash on morphological distribution of As, Se and Pb in flue gas[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1530-1536. shu

Thermodynamic study on effect of minerals in fly ash on morphological distribution of As, Se and Pb in flue gas

  • Corresponding author: LIU Zhong, liuzhong6789@sina.com
  • Received Date: 4 September 2020
    Revised Date: 9 October 2020

    Fund Project: The project was supported by the National Key Research and Development Program of China (2018YFB0605101) and the National Natural Science Foundation of China(51676070)the National Natural Science Foundation of China 51676070the National Key Research and Development Program of China 2018YFB0605101

Figures(6)

  • Based on the principle of thermodynamic equilibrium, reactions between heavy metals As, Se and Pb in flue gas of coal burning and main minerals CaO, Al2O3, Fe2O3 and MgO in fly ash were studied. The results show that As reacts with CaO at 1600 K to form Ca3(AsO4)2, and its temperature range becomes narrower with increasing CaO concentration, indicating that CaO can inhibit volatilization of As in coal. As reacts with Al2O3 at 1700 K, reaction of As with Fe2O3 forms FeAsO4. As and MgO exist in the form of Mg3(AsO4)2(s) between 600 and 1500 K, and turns into As2O5(s) below 600 K. Se and CaO, MgO exist in the form of CaSeO3(s) and MgSeO3(s), respectively, below 600 K, but does not react with Al2O3 and Fe2O3. CaO and Pb react at 900-1100 K to form (CaO)2(PbO2)(s). Pb reacts with Al2O3, and solid (PbO)(Al2O3)6(s) is formed at 900-1200 K. Fe2O3 and MgO have no effect on species distribution of Pb.
  • 加载中
    1. [1]

      LI Chang-xin, WANG Hao, YE Jian-kai, XIAO Xiao-qin, WANG Shu-wen, HE Yun-feng. Pollution characteristics of particulate matter and particulate mercury near a coal-fired power plant[J]. Acta Sci Circumstantiae, 2020,40(8):2944-2951.

    2. [2]

      LIANG Bin, BAI Hao-long, FENG Qiang, SONG Hua, LAN Tian, LIU Xin-hua. Emissions of particulate matter and polycyclic aromatic hydrocarbons from household coal combustions[J]. J Chem Ind Eng, 2019,70(8):2888-2897+3212.

    3. [3]

      QIAO Gang-jie, LIU Xuan, ZHAO Yuan-cai, LIU Hong-gang, KONG Fan-rong, ZAHNG Kai. Emission of typical heavy metal from coal-fired power plants and control[J]. Power Syst Eng, 2020,36(2):1-4+8.

    4. [4]

      LI Yun, GUO Wei. Analysis of indicators and indicators of industrial relations coal analysis[J]. Sci Technol Innov, 2014(6)155.

    5. [5]

      GUO Fu-qiang, LIU Qing-cai, JIANG Li-jun, REN Shan, WANG Zhu, Zhao Qi. Influence of burning temperature and particle size on particulate matter microstructure during pulverized coal combustion[C]. Chin Soc Environ Sci, 2016: 61-65.

    6. [6]

      DENG Shuang, ZHANG Fan, LIU Yu, SHI Ying-jie, WANG Hong-mei, ZHANG Chen, WANG Xiang-feng, CAO Qing. Lead emission and speciation of coal-fired power plants in China[J]. Chin Environ Sci, 2013,33(7):1199-1206.

    7. [7]

      MA Yang-yang, ZHONG Zhao-ping, LAI Xu-dong. Enrichment of heavy metals during coal combustion by mineral additives[J]. Chem Ind Eng Prog, 2020,39(6):2479-2486.

    8. [8]

      ZHA J, HUANG Y, XIA W, XIA Z, LIU C, DONG L, LIU L. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration[J]. Fuel, 2018,229:241-247.

    9. [9]

      WANG C, LIU H, ZHANG Y, ZOU C, EDWARD J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Energy Combust, 2018,68(S):1-28.

    10. [10]

      GUO Sheng-li. Research on the characteristic of movement and transformation and pollution control of heavy metals in coal combustion[D]. Chongqing: Chongqing University, 2014.

    11. [11]

      LEI M, DONG Z, JIANG Y, LONGHURST P, WAN X, ZHOU G. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front Environ Sci Eng, 2019,13(2):P.105-113.

    12. [12]

      ZHANG Shu-hui, LV Qing, HU Xiao. Review on sorbents for arsenic removal from flue gas[J]. Environ Sci Technol, 2011,34(3):197-204.

    13. [13]

      CHEN Dun-kui. Investigation on the Adsorption Mechanism of Arsenic in Flue Gas during Fuel Combustion. Wuhan: Huazhong University of Science and Technology, 2016.

    14. [14]

      YANG Y, HU H, XIE K, HUANG Y, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019,37(4):4443-4450.

    15. [15]

      ZHANG K, WANG P, ZHANG D, ZHANG K. Studies on the correlation between physicochemical properties of fly ash and its sorption of gas-phase arsenic[J]. Environ Technol, 2019,40(19):2548-2555.

    16. [16]

      ZHOU C, LIU G, XU Z, SUN H, SING LAM P K. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017,204(s):91-97.

    17. [17]

      ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As 2 O 3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol, 2015,43(4):476-482.

    18. [18]

      LI Yu-zhong. Experimental study on simultaneous removal of trace selenium and arsenic in flue gas desulphurization within medium temperature range[D]. Beijing: Tsinghua University, 2006.

    19. [19]

      ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yan-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chem Technol, 2000,28(3):198-200.

    20. [20]

      FOLGUERAS M B, MARÍA D R, XIBERTA J, ALONSO M. Effect of Inorganic Matter on Trace Element Behavior during Combustion of CoalSewage Sludge Blends[J]. Energy Fuels, 2007,21(2):744-755.

    21. [21]

      JIAO F, ZHANG L, SONG W. Effect of inorganic particulates on the condensation behavior of lead and zinc vapors upon flue gas cooling[J]. Proceedings of the Combustion Institute, 2013,34(2):2821-2829.

    22. [22]

      MENG Yun, ZHANG Jun-ying, ZHONG Qin, ZHENG Chu-guang, WANG Ben. Development of thermodynamic equilibrium prediction of trace arsenic and selenium speciation during coal combustion[J]. Techn Equi Environ Pollut Control, 2002(9):1-5.

    23. [23]

      ZHANG Lu. Study on the performance of oxygen carrier CaSO <, 4> in chemical chain combustion technology[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    24. [24]

      FAN Wei. Physical and chemical properties of smoke and dust in stainless steel factory and formation of chromium-containing phase[D]. Wuhan: Wuhan University of Science and Technology, 2012.

    25. [25]

      CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015,267:201-206.

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    3. [3]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(14)
  • Abstract views(1146)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return